This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325614 #5 May 13 2019 01:10:22 %S A325614 1,1,1,2,1,1,1,2,1,2,1,3,2,2,2,1,1,1,1,1,1,3,1,2,1,1,3,1,2,2,1,4,2,1, %T A325614 1,3,2,3,1,3,1,1,3,1,1,2,1,1,1,2,2,1,4,1,2,2,2,3,1,1,3,3,4,1,2,1,1,1, %U A325614 3,2,1,1,1,1,1,1,5,2,2,1,1,3,1,1,3,1,1 %N A325614 Unsorted q-signature of n. %C A325614 Every positive integer has a unique q-factorization (encoded by A324924) into factors q(i) = prime(i)/i, i > 0. For example: %C A325614 11 = q(1) q(2) q(3) q(5) %C A325614 50 = q(1)^3 q(2)^2 q(3)^2 %C A325614 360 = q(1)^6 q(2)^3 q(3) %C A325614 Row n lists the nonzero multiplicities in the q-factorization of n, in order of q-index. For example, row 11 is (1,1,1,1) and row 360 is (6,3,1). %e A325614 Triangle begins: %e A325614 {} %e A325614 1 %e A325614 1 1 %e A325614 2 %e A325614 1 1 1 %e A325614 2 1 %e A325614 2 1 %e A325614 3 %e A325614 2 2 %e A325614 2 1 1 %e A325614 1 1 1 1 %e A325614 3 1 %e A325614 2 1 1 %e A325614 3 1 %e A325614 2 2 1 %e A325614 4 %e A325614 2 1 1 %e A325614 3 2 %e A325614 3 1 %e A325614 3 1 1 %t A325614 difac[n_]:=If[n==1,{},With[{i=PrimePi[FactorInteger[n][[1,1]]]},Sort[Prepend[difac[n*i/Prime[i]],i]]]]; %t A325614 Table[Length/@Split[difac[n]],{n,30}] %Y A325614 Row lengths are A324923. %Y A325614 Row sums are A196050. %Y A325614 Row-maxima are A109129. %Y A325614 Cf. A118914, A324922, A324924, A324931, A324934, A325608, A325609, A325613, A325615, A325660. %K A325614 nonn,tabf %O A325614 1,4 %A A325614 _Gus Wiseman_, May 12 2019