This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325615 #4 May 13 2019 01:10:28 %S A325615 1,1,1,2,1,1,1,1,2,1,2,3,2,2,1,1,2,1,1,1,1,1,3,1,1,2,1,3,1,2,2,4,1,1, %T A325615 2,2,3,1,3,1,1,3,1,1,3,1,1,1,2,1,2,2,1,4,2,2,2,1,1,3,3,3,1,4,1,1,1,2, %U A325615 1,2,3,1,1,1,1,1,5,1,1,2,2,1,1,3,1,1,1 %N A325615 Sorted q-signature of n. %C A325615 Every positive integer has a unique q-factorization (encoded by A324924) into factors q(i) = prime(i)/i, i > 0. For example: %C A325615 11 = q(1) q(2) q(3) q(5) %C A325615 50 = q(1)^3 q(2)^2 q(3)^2 %C A325615 360 = q(1)^6 q(2)^3 q(3) %C A325615 Row n is the multiset of nonzero multiplicities in the q-factorization of n. For example, row 11 is (1,1,1,1) and row 360 is (1,3,6). %e A325615 Triangle begins: %e A325615 {} %e A325615 1 %e A325615 1 1 %e A325615 2 %e A325615 1 1 1 %e A325615 1 2 %e A325615 1 2 %e A325615 3 %e A325615 2 2 %e A325615 1 1 2 %e A325615 1 1 1 1 %e A325615 1 3 %e A325615 1 1 2 %e A325615 1 3 %e A325615 1 2 2 %e A325615 4 %e A325615 1 1 2 %e A325615 2 3 %e A325615 1 3 %e A325615 1 1 3 %t A325615 difac[n_]:=If[n==1,{},With[{i=PrimePi[FactorInteger[n][[1,1]]]},Sort[Prepend[difac[n*i/Prime[i]],i]]]]; %t A325615 Table[Sort[Length/@Split[difac[n]]],{n,30}] %Y A325615 Row lengths are A324923. %Y A325615 Row sums are A196050. %Y A325615 Row-maxima are A109129. %Y A325615 Cf. A118914, A324922, A324924, A324931, A324934, A325608, A325609, A325613, A325614, A325660. %K A325615 nonn,tabf %O A325615 1,4 %A A325615 _Gus Wiseman_, May 12 2019