This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325616 #6 May 13 2019 01:10:35 %S A325616 1,0,1,0,1,1,0,0,1,1,0,0,1,1,1,0,0,0,1,1,1,0,1,0,1,1,1,1,0,0,1,0,1,1, %T A325616 1,1,0,0,1,1,1,1,1,1,1,0,0,0,1,1,1,1,1,1,1,0,0,0,1,1,2,1,1,1,1,1,0,0, %U A325616 0,0,1,1,2,1,1,1,1,1,0,0,1,0,1,1,2,2,1 %N A325616 Triangle read by rows where T(n,k) is the number of length-k integer partitions of n into factorial numbers. %F A325616 T(n,k) is the coefficient of x^n * y^k in the expansion of Product_{i > 0} 1/(1 - y * x^(i!)). %e A325616 Triangle begins: %e A325616 1 %e A325616 0 1 %e A325616 0 1 1 %e A325616 0 0 1 1 %e A325616 0 0 1 1 1 %e A325616 0 0 0 1 1 1 %e A325616 0 1 0 1 1 1 1 %e A325616 0 0 1 0 1 1 1 1 %e A325616 0 0 1 1 1 1 1 1 1 %e A325616 0 0 0 1 1 1 1 1 1 1 %e A325616 0 0 0 1 1 2 1 1 1 1 1 %e A325616 0 0 0 0 1 1 2 1 1 1 1 1 %e A325616 0 0 1 0 1 1 2 2 1 1 1 1 1 %e A325616 0 0 0 1 0 1 1 2 2 1 1 1 1 1 %e A325616 0 0 0 1 1 1 1 2 2 2 1 1 1 1 1 %e A325616 0 0 0 0 1 1 1 1 2 2 2 1 1 1 1 1 %e A325616 0 0 0 0 1 1 2 1 2 2 2 2 1 1 1 1 1 %e A325616 0 0 0 0 0 1 1 2 1 2 2 2 2 1 1 1 1 1 %e A325616 0 0 0 1 0 1 1 2 2 2 2 2 2 2 1 1 1 1 1 %e A325616 0 0 0 0 1 0 1 1 2 2 2 2 2 2 2 1 1 1 1 1 %e A325616 0 0 0 0 1 1 1 1 2 2 3 2 2 2 2 2 1 1 1 1 1 %e A325616 Row n = 12 counts the following partitions: %e A325616 (66) %e A325616 (6222) %e A325616 (62211) %e A325616 (222222) (621111) %e A325616 (2222211) (6111111) %e A325616 (22221111) %e A325616 (222111111) %e A325616 (2211111111) %e A325616 (21111111111) %e A325616 (111111111111) %t A325616 Table[SeriesCoefficient[Product[1/(1-y*x^(i!)),{i,1,n}],{x,0,n},{y,0,k}],{n,0,15},{k,0,n}] %Y A325616 Row sums are A064986. %Y A325616 Cf. A008284. %Y A325616 Factorial numbers: A000142, A007489, A076934, A108731, A115944, A227157, A284605, A322583, A325509, A325617. %Y A325616 Reciprocal factorial sum: A325618, A325619, A325620, A325622. %K A325616 nonn,tabl %O A325616 0,61 %A A325616 _Gus Wiseman_, May 12 2019