cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325616 Triangle read by rows where T(n,k) is the number of length-k integer partitions of n into factorial numbers.

This page as a plain text file.
%I A325616 #6 May 13 2019 01:10:35
%S A325616 1,0,1,0,1,1,0,0,1,1,0,0,1,1,1,0,0,0,1,1,1,0,1,0,1,1,1,1,0,0,1,0,1,1,
%T A325616 1,1,0,0,1,1,1,1,1,1,1,0,0,0,1,1,1,1,1,1,1,0,0,0,1,1,2,1,1,1,1,1,0,0,
%U A325616 0,0,1,1,2,1,1,1,1,1,0,0,1,0,1,1,2,2,1
%N A325616 Triangle read by rows where T(n,k) is the number of length-k integer partitions of n into factorial numbers.
%F A325616 T(n,k) is the coefficient of x^n * y^k in the expansion of Product_{i > 0} 1/(1 - y * x^(i!)).
%e A325616 Triangle begins:
%e A325616   1
%e A325616   0 1
%e A325616   0 1 1
%e A325616   0 0 1 1
%e A325616   0 0 1 1 1
%e A325616   0 0 0 1 1 1
%e A325616   0 1 0 1 1 1 1
%e A325616   0 0 1 0 1 1 1 1
%e A325616   0 0 1 1 1 1 1 1 1
%e A325616   0 0 0 1 1 1 1 1 1 1
%e A325616   0 0 0 1 1 2 1 1 1 1 1
%e A325616   0 0 0 0 1 1 2 1 1 1 1 1
%e A325616   0 0 1 0 1 1 2 2 1 1 1 1 1
%e A325616   0 0 0 1 0 1 1 2 2 1 1 1 1 1
%e A325616   0 0 0 1 1 1 1 2 2 2 1 1 1 1 1
%e A325616   0 0 0 0 1 1 1 1 2 2 2 1 1 1 1 1
%e A325616   0 0 0 0 1 1 2 1 2 2 2 2 1 1 1 1 1
%e A325616   0 0 0 0 0 1 1 2 1 2 2 2 2 1 1 1 1 1
%e A325616   0 0 0 1 0 1 1 2 2 2 2 2 2 2 1 1 1 1 1
%e A325616   0 0 0 0 1 0 1 1 2 2 2 2 2 2 2 1 1 1 1 1
%e A325616   0 0 0 0 1 1 1 1 2 2 3 2 2 2 2 2 1 1 1 1 1
%e A325616 Row n = 12 counts the following partitions:
%e A325616   (66)
%e A325616   (6222)
%e A325616   (62211)
%e A325616   (222222) (621111)
%e A325616   (2222211) (6111111)
%e A325616   (22221111)
%e A325616   (222111111)
%e A325616   (2211111111)
%e A325616   (21111111111)
%e A325616   (111111111111)
%t A325616 Table[SeriesCoefficient[Product[1/(1-y*x^(i!)),{i,1,n}],{x,0,n},{y,0,k}],{n,0,15},{k,0,n}]
%Y A325616 Row sums are A064986.
%Y A325616 Cf. A008284.
%Y A325616 Factorial numbers: A000142, A007489, A076934, A108731, A115944, A227157, A284605, A322583, A325509, A325617.
%Y A325616 Reciprocal factorial sum: A325618, A325619, A325620, A325622.
%K A325616 nonn,tabl
%O A325616 0,61
%A A325616 _Gus Wiseman_, May 12 2019