This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325619 #6 May 13 2019 08:11:38 %S A325619 2,9,375,15625 %N A325619 Heinz numbers of integer partitions whose reciprocal factorial sum is 1. %C A325619 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A325619 The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!. %F A325619 Contains prime(n)^(n!) for all n > 0, including 191581231380566414401 for n = 4. %e A325619 The sequence of terms together with their prime indices begins: %e A325619 1: {} %e A325619 2: {1} %e A325619 9: {2,2} %e A325619 375: {2,3,3,3} %e A325619 15625: {3,3,3,3,3,3} %t A325619 Select[Range[100000],Total[Cases[FactorInteger[#],{p_,k_}:>k/PrimePi[p]!]]==1&] %Y A325619 Factorial numbers: A000142, A007489, A022559, A064986, A108731, A115944, A284605, A325508, A325616. %Y A325619 Reciprocal factorial sum: A002966, A051908, A316855, A325618, A325624. %K A325619 nonn,more %O A325619 1,1 %A A325619 _Gus Wiseman_, May 13 2019