cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325619 Heinz numbers of integer partitions whose reciprocal factorial sum is 1.

This page as a plain text file.
%I A325619 #6 May 13 2019 08:11:38
%S A325619 2,9,375,15625
%N A325619 Heinz numbers of integer partitions whose reciprocal factorial sum is 1.
%C A325619 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%C A325619 The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.
%F A325619 Contains prime(n)^(n!) for all n > 0, including 191581231380566414401 for n = 4.
%e A325619 The sequence of terms together with their prime indices begins:
%e A325619       1: {}
%e A325619       2: {1}
%e A325619       9: {2,2}
%e A325619     375: {2,3,3,3}
%e A325619   15625: {3,3,3,3,3,3}
%t A325619 Select[Range[100000],Total[Cases[FactorInteger[#],{p_,k_}:>k/PrimePi[p]!]]==1&]
%Y A325619 Factorial numbers: A000142, A007489, A022559, A064986, A108731, A115944, A284605, A325508, A325616.
%Y A325619 Reciprocal factorial sum: A002966, A051908, A316855, A325618, A325624.
%K A325619 nonn,more
%O A325619 1,1
%A A325619 _Gus Wiseman_, May 13 2019