This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325620 #6 May 13 2019 08:11:51 %S A325620 1,1,1,2,2,2,2,3,3,3,4,5,5,5,6,7,7,8,9,10,10,11,12,14,14,15,16,18,19, %T A325620 20,22,24,25,26,28,31,33,34,36,39,41,43,45,49,52,54,57,61,65,68,71,76, %U A325620 80,84,88,93,98,103,107,113 %N A325620 Number of integer partitions of n whose reciprocal factorial sum is an integer. %C A325620 The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!. %e A325620 The initial terms count the following partitions: %e A325620 1: (1) %e A325620 2: (1,1) %e A325620 3: (1,1,1) %e A325620 4: (2,2) %e A325620 4: (1,1,1,1) %e A325620 5: (2,2,1) %e A325620 5: (1,1,1,1,1) %e A325620 6: (2,2,1,1) %e A325620 6: (1,1,1,1,1,1) %e A325620 7: (2,2,1,1,1) %e A325620 7: (1,1,1,1,1,1,1) %e A325620 8: (2,2,2,2) %e A325620 8: (2,2,1,1,1,1) %e A325620 8: (1,1,1,1,1,1,1,1) %e A325620 9: (2,2,2,2,1) %e A325620 9: (2,2,1,1,1,1,1) %e A325620 9: (1,1,1,1,1,1,1,1,1) %t A325620 Table[Length[Select[IntegerPartitions[n],IntegerQ[Total[1/(#!)]]&]],{n,30}] %Y A325620 Factorial numbers: A000142, A007489, A022559, A064986, A108731, A115944, A284605, A325508, A325616. %Y A325620 Reciprocal factorial sum: A002966, A051908, A058360, A316854, A316856, A325618, A325621, A325622. %K A325620 nonn,more %O A325620 1,4 %A A325620 _Gus Wiseman_, May 13 2019