This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325621 #6 May 13 2019 08:12:17 %S A325621 1,2,4,8,9,16,18,32,36,64,72,81,128,144,162,256,288,324,375,512,576, %T A325621 648,729,750,1024,1152,1296,1458,1500,2048,2304,2592,2916,3000,3375, %U A325621 4096,4608,5184,5832,6000,6561,6750,8192,9216,10368,11664,12000,13122,13500 %N A325621 Heinz numbers of integer partitions whose reciprocal factorial sum is an integer. %C A325621 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A325621 The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!. %e A325621 The sequence of terms together with their prime indices begins: %e A325621 1: {} %e A325621 2: {1} %e A325621 4: {1,1} %e A325621 8: {1,1,1} %e A325621 9: {2,2} %e A325621 16: {1,1,1,1} %e A325621 18: {1,2,2} %e A325621 32: {1,1,1,1,1} %e A325621 36: {1,1,2,2} %e A325621 64: {1,1,1,1,1,1} %e A325621 72: {1,1,1,2,2} %e A325621 81: {2,2,2,2} %e A325621 128: {1,1,1,1,1,1,1} %e A325621 144: {1,1,1,1,2,2} %e A325621 162: {1,2,2,2,2} %e A325621 256: {1,1,1,1,1,1,1,1} %e A325621 288: {1,1,1,1,1,2,2} %e A325621 324: {1,1,2,2,2,2} %e A325621 375: {2,3,3,3} %e A325621 512: {1,1,1,1,1,1,1,1,1} %t A325621 Select[Range[1000],IntegerQ[Total[Cases[FactorInteger[#],{p_,k_}:>k/PrimePi[p]!]]]&] %Y A325621 Factorial numbers: A000142, A007489, A022559, A064986, A108731, A115944, A284605, A325508, A325616. %Y A325621 Reciprocal factorial sum: A002966, A058360, A316856, A325619, A325620, A325623. %K A325621 nonn %O A325621 1,2 %A A325621 _Gus Wiseman_, May 13 2019