cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325621 Heinz numbers of integer partitions whose reciprocal factorial sum is an integer.

This page as a plain text file.
%I A325621 #6 May 13 2019 08:12:17
%S A325621 1,2,4,8,9,16,18,32,36,64,72,81,128,144,162,256,288,324,375,512,576,
%T A325621 648,729,750,1024,1152,1296,1458,1500,2048,2304,2592,2916,3000,3375,
%U A325621 4096,4608,5184,5832,6000,6561,6750,8192,9216,10368,11664,12000,13122,13500
%N A325621 Heinz numbers of integer partitions whose reciprocal factorial sum is an integer.
%C A325621 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%C A325621 The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.
%e A325621 The sequence of terms together with their prime indices begins:
%e A325621       1: {}
%e A325621       2: {1}
%e A325621       4: {1,1}
%e A325621       8: {1,1,1}
%e A325621       9: {2,2}
%e A325621      16: {1,1,1,1}
%e A325621      18: {1,2,2}
%e A325621      32: {1,1,1,1,1}
%e A325621      36: {1,1,2,2}
%e A325621      64: {1,1,1,1,1,1}
%e A325621      72: {1,1,1,2,2}
%e A325621      81: {2,2,2,2}
%e A325621     128: {1,1,1,1,1,1,1}
%e A325621     144: {1,1,1,1,2,2}
%e A325621     162: {1,2,2,2,2}
%e A325621     256: {1,1,1,1,1,1,1,1}
%e A325621     288: {1,1,1,1,1,2,2}
%e A325621     324: {1,1,2,2,2,2}
%e A325621     375: {2,3,3,3}
%e A325621     512: {1,1,1,1,1,1,1,1,1}
%t A325621 Select[Range[1000],IntegerQ[Total[Cases[FactorInteger[#],{p_,k_}:>k/PrimePi[p]!]]]&]
%Y A325621 Factorial numbers: A000142, A007489, A022559, A064986, A108731, A115944, A284605, A325508, A325616.
%Y A325621 Reciprocal factorial sum: A002966, A058360, A316856, A325619, A325620, A325623.
%K A325621 nonn
%O A325621 1,2
%A A325621 _Gus Wiseman_, May 13 2019