This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325622 #12 Feb 26 2025 06:35:16 %S A325622 1,1,1,2,1,2,1,2,3,2,3,3,2,2,3,3,3,5,4,4,3,3,4,6,3,4,5,5,5,6,3,7,6,5, %T A325622 6,6,6,5,6,8,5,7,5,4,8,7,7,7,7,9,9,9,10,12,6,12,8,10,7,14,10,8,11,11, %U A325622 12,11,10,10,12,14,11,10,9,10,12,10,15,14,11,10 %N A325622 Number of integer partitions of n whose reciprocal factorial sum is the reciprocal of an integer. %C A325622 The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!. %e A325622 The initial terms count the following partitions: %e A325622 1: (1) %e A325622 2: (2) %e A325622 3: (3) %e A325622 4: (4) %e A325622 4: (2,2) %e A325622 5: (5) %e A325622 6: (6) %e A325622 6: (3,3) %e A325622 7: (7) %e A325622 8: (8) %e A325622 8: (4,4) %e A325622 9: (9) %e A325622 9: (5,4) %e A325622 9: (3,3,3) %e A325622 10: (10) %e A325622 10: (5,5) %e A325622 11: (11) %e A325622 11: (4,4,3) %e A325622 11: (3,3,3,2) %e A325622 12: (12) %e A325622 12: (6,6) %e A325622 12: (4,4,4) %p A325622 f:= proc(n) nops(select(proc(t) local i; (1/add(1/i!,i=t))::integer end proc, combinat:-partition(n))) end proc: %p A325622 map(f, [$1..70]); # _Robert Israel_, May 09 2024 %t A325622 Table[Length[Select[IntegerPartitions[n],IntegerQ[1/Total[1/(#!)]]&]],{n,30}] %o A325622 (PARI) a(n) = my(c=0); forpart(v=n, if(numerator(sum(i=1, #v, 1/v[i]!))==1, c++)); c; \\ _Jinyuan Wang_, Feb 25 2025 %Y A325622 Factorial numbers: A000142, A007489, A022559, A064986, A108731, A115944, A284605, A325508, A325616. %Y A325622 Reciprocal factorial sum: A002966, A316854, A316857, A325618, A325620, A325623. %K A325622 nonn %O A325622 1,4 %A A325622 _Gus Wiseman_, May 13 2019 %E A325622 a(61)-a(70) from _Robert Israel_, May 09 2024 %E A325622 a(71)-a(80) from _Jinyuan Wang_, Feb 25 2025