cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325623 Heinz numbers of integer partitions whose reciprocal factorial sum is the reciprocal of an integer.

This page as a plain text file.
%I A325623 #6 May 13 2019 08:12:24
%S A325623 1,2,3,5,7,9,11,13,17,19,23,25,29,31,37,41,43,47,49,53,59,61,67,71,73,
%T A325623 77,79,83,89,97,101,103,107,109,113,121,125,127,131,137,139,149,151,
%U A325623 157,163,167,169,173,179,181,191,193,197,199,211,221,223,227,229
%N A325623 Heinz numbers of integer partitions whose reciprocal factorial sum is the reciprocal of an integer.
%C A325623 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%C A325623 The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.
%e A325623 The sequence of terms together with their prime indices begins:
%e A325623     1: {}
%e A325623     2: {1}
%e A325623     3: {2}
%e A325623     5: {3}
%e A325623     7: {4}
%e A325623     9: {2,2}
%e A325623    11: {5}
%e A325623    13: {6}
%e A325623    17: {7}
%e A325623    19: {8}
%e A325623    23: {9}
%e A325623    25: {3,3}
%e A325623    29: {10}
%e A325623    31: {11}
%e A325623    37: {12}
%e A325623    41: {13}
%e A325623    43: {14}
%e A325623    47: {15}
%e A325623    49: {4,4}
%e A325623    53: {16}
%t A325623 Select[Range[100],IntegerQ[1/Total[Cases[FactorInteger[#],{p_,k_}:>k/PrimePi[p]!]]]&]
%Y A325623 Factorial numbers: A000142, A007489, A022559, A064986, A108731, A115944, A284605, A325508, A325616.
%Y A325623 Reciprocal factorial sum: A002966, A051908, A058360, A316854, A316857, A325619, A325621, A325622.
%K A325623 nonn
%O A325623 1,2
%A A325623 _Gus Wiseman_, May 13 2019