This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325623 #6 May 13 2019 08:12:24 %S A325623 1,2,3,5,7,9,11,13,17,19,23,25,29,31,37,41,43,47,49,53,59,61,67,71,73, %T A325623 77,79,83,89,97,101,103,107,109,113,121,125,127,131,137,139,149,151, %U A325623 157,163,167,169,173,179,181,191,193,197,199,211,221,223,227,229 %N A325623 Heinz numbers of integer partitions whose reciprocal factorial sum is the reciprocal of an integer. %C A325623 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A325623 The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!. %e A325623 The sequence of terms together with their prime indices begins: %e A325623 1: {} %e A325623 2: {1} %e A325623 3: {2} %e A325623 5: {3} %e A325623 7: {4} %e A325623 9: {2,2} %e A325623 11: {5} %e A325623 13: {6} %e A325623 17: {7} %e A325623 19: {8} %e A325623 23: {9} %e A325623 25: {3,3} %e A325623 29: {10} %e A325623 31: {11} %e A325623 37: {12} %e A325623 41: {13} %e A325623 43: {14} %e A325623 47: {15} %e A325623 49: {4,4} %e A325623 53: {16} %t A325623 Select[Range[100],IntegerQ[1/Total[Cases[FactorInteger[#],{p_,k_}:>k/PrimePi[p]!]]]&] %Y A325623 Factorial numbers: A000142, A007489, A022559, A064986, A108731, A115944, A284605, A325508, A325616. %Y A325623 Reciprocal factorial sum: A002966, A051908, A058360, A316854, A316857, A325619, A325621, A325622. %K A325623 nonn %O A325623 1,2 %A A325623 _Gus Wiseman_, May 13 2019