A325629 Floor of number of n-dimensional degrees in an n-sphere.
2, 360, 41252, 3712766, 283634468, 19145326633, 1170076174384, 65816784809141, 3447793362911604, 16969079580805447, 7901760333122072321, 350023289756266797348, 14816864219294689084225
Offset: 0
Keywords
Examples
Number of cubic degrees in a 3-sphere: Surface area of a 3-sphere: 2*Pi^((3+1)/2) / ((3+1)/2 - 1)! = 2*Pi^2 / (2-1)! = 2*Pi^2. Cubic degrees: 2*Pi^2 * (180/Pi)^3 = 11664000 / Pi = 3712766.512... Number of tesseractic degrees in a 4-sphere: Surface area of a 4-sphere: 2*Pi^((4+1)/2) / Gamma(5/2) = 2*Pi^(5/2) / (3*Pi^(1/2)/4) = 8*Pi^2/3. Tesseractic degrees: 8*Pi^2/3 * (180/Pi)^4 = 2799360000 / Pi^2 = 283634468.641...
Links
- Eric Weisstein's World of Mathematics, Solid Angle.
- Wikipedia, N-sphere
- Wikipedia, Particular values of the gamma function
Crossrefs
Formula
a(n) = floor((2*Pi^((n+1)/2)/((n+1)/2-1)!)/(Pi/180)^n).
a(n) = floor((2*Pi^((n+1)/2)/(Gamma((n+1)/2)))/(Pi/180)^n).
a(n) = floor(2^(2n+1)*45^n*Pi^((n+1)/2-n)/((n+1)/2-1)!).
a(n) = floor(2^(2n+1)*45^n*Pi^((n+1)/2-n)/(Gamma((n+1)/2))).
Comments