This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325644 #24 Oct 09 2019 13:44:18 %S A325644 0,1,2,7,4,5,6,11,8,9,10,15,12,13,30,19,16,17,18,23,20,21,22,27,24,25, %T A325644 26,31,28,29,46,35,32,33,34,39,36,37,38,43,40,41,42,47,44,45,62,51,48, %U A325644 49,50,55,52,53,54,59,56,57,58,63,60,125,78,67,64,65,66,71,68,69,70 %N A325644 "Sloping quaternary numbers": write numbers in quaternary under each other (right-justified), read diagonals in upward direction, convert to decimal. %H A325644 Seiichi Manyama, <a href="/A325644/b325644.txt">Table of n, a(n) for n = 0..10000</a> %H A325644 Wikipedia, <a href="https://en.wikipedia.org/wiki/Quaternary_numeral_system">Quaternary numeral system</a> %e A325644 0 %e A325644 1 %e A325644 2 %e A325644 3 %e A325644 10 %e A325644 11 %e A325644 12 %e A325644 13 %e A325644 20 %e A325644 21 %e A325644 22 %e A325644 23 %e A325644 30 %e A325644 31 %e A325644 32 %e A325644 33 %e A325644 100 %e A325644 ... %e A325644 The upward-sloping diagonals are: %e A325644 0 %e A325644 1 %e A325644 2 %e A325644 13 %e A325644 10 %e A325644 11 %e A325644 12 %e A325644 23 %e A325644 20 %e A325644 21 %e A325644 22 %e A325644 33 %e A325644 30 %e A325644 31 %e A325644 132 %e A325644 103 %e A325644 100 %e A325644 ... %e A325644 giving 0, 1, 2, "7", 4, 5, 6, "11", 8, 9, 10, "15", 12, 13, "30", "19", 16, ... %o A325644 (Ruby) %o A325644 def A(m, n) %o A325644 ary = [0] %o A325644 n.times{|i| %o A325644 (m ** i - i..m ** (i + 1) - i - 2).each{|j| %o A325644 ary << (0..i).inject(0){|s, k| s + (j + k).to_s(m)[-1 - k].to_i * m ** k} %o A325644 } %o A325644 } %o A325644 ary %o A325644 end %o A325644 p A(4, 4) %Y A325644 Cf. A102370 (base 2), A109681 (base3), this sequence (base 4), A325645 (base 5), A325692 (base 6), A325693 (base 7), A325805 (base 8), A325829 (base 9), A103205 (base 10). %K A325644 nonn,base %O A325644 0,3 %A A325644 _Seiichi Manyama_, Sep 07 2019