cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325645 "Sloping quinary numbers": write numbers in quinary under each other (right-justified), read diagonals in upward direction, convert to decimal.

This page as a plain text file.
%I A325645 #19 Sep 10 2019 14:16:48
%S A325645 0,1,2,3,9,5,6,7,8,14,10,11,12,13,19,15,16,17,18,24,20,21,22,48,29,25,
%T A325645 26,27,28,34,30,31,32,33,39,35,36,37,38,44,40,41,42,43,49,45,46,47,73,
%U A325645 54,50,51,52,53,59,55,56,57,58,64,60,61,62,63,69,65,66,67,68,74,70,71
%N A325645 "Sloping quinary numbers": write numbers in quinary under each other (right-justified), read diagonals in upward direction, convert to decimal.
%H A325645 Seiichi Manyama, <a href="/A325645/b325645.txt">Table of n, a(n) for n = 0..10000</a>
%H A325645 Wikipedia, <a href="https://en.wikipedia.org/wiki/Quinary">Quinary</a>
%o A325645 (Ruby)
%o A325645 def A(m, n)
%o A325645   ary = [0]
%o A325645   n.times{|i|
%o A325645     (m ** i - i..m ** (i + 1) - i - 2).each{|j|
%o A325645       ary << (0..i).inject(0){|s, k| s + (j + k).to_s(m)[-1 - k].to_i * m ** k}
%o A325645     }
%o A325645   }
%o A325645   ary
%o A325645 end
%o A325645 p A(5, 3)
%Y A325645 Cf. A102370 (base 2), A109681 (base3), A325644 (base 4), this sequence (base 5), A325692 (base 6), A325693 (base 7), A325805 (base 8), A325829 (base 9), A103205 (base 10).
%K A325645 nonn,base
%O A325645 0,3
%A A325645 _Seiichi Manyama_, Sep 07 2019