This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325660 #5 May 13 2019 08:11:44 %S A325660 0,1,2,0,3,1,1,0,0,2,4,1,2,1,1,0,2,0,1,2,2,3,1,1,0,2,0,1,3,1,5,0,2,2, %T A325660 3,0,2,1,1,2,3,2,2,3,1,1,2,1,0,0,3,2,1,0,1,1,2,3,3,1,1,4,1,0,2,2,2,2, %U A325660 1,3,3,0,3,2,0,1,4,1,4,2,0,3,2,2,4,2,2 %N A325660 Number of ones in the q-signature of n. %C A325660 Every positive integer has a unique q-factorization (encoded by A324924) into factors q(i) = prime(i)/i, i > 0. For example: %C A325660 11 = q(1) q(2) q(3) q(5) %C A325660 50 = q(1)^3 q(2)^2 q(3)^2 %C A325660 360 = q(1)^6 q(2)^3 q(3) %C A325660 Then a(n) is the number of factors of multiplicity one in the q-factorization of n. %C A325660 Also the number of rooted trees appearing only once in the multiset of terminal subtrees of the rooted tree with Matula-Goebel number n. %t A325660 difac[n_]:=If[n==1,{},With[{i=PrimePi[FactorInteger[n][[1,1]]]},Sort[Prepend[difac[n*i/Prime[i]],i]]]]; %t A325660 Table[Count[Length/@Split[difac[n]],1],{n,100}] %Y A325660 Cf. A001694, A055231, A056169, A056239, A112798, A118914, A124010. %Y A325660 Matula-Goebel numbers: A007097, A061775, A109129, A196050, A317713, A324968. %Y A325660 q-factorization: A324922, A324923, A324924, A325614, A325661. %K A325660 nonn %O A325660 1,3 %A A325660 _Gus Wiseman_, May 13 2019