This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325661 #8 May 22 2019 22:08:31 %S A325661 1,4,8,9,16,18,25,27,32,36,49,50,54,64,72,75,81,98,100,108,121,125, %T A325661 128,144,150,162,169,196,200,216,225,242,243,250,256,288,289,300,324, %U A325661 338,343,361,363,375,392,400,432,441,450,484,486,500,507,512,529,576 %N A325661 q-powerful numbers. Numbers whose factorization into factors prime(i)/i has no factor of multiplicity 1. %C A325661 First differs from A070003 in having 1 and lacking 147. %C A325661 Every positive integer has a unique q-factorization (encoded by A324924) into factors q(i) = prime(i)/i, i > 0. For example: %C A325661 11 = q(1) q(2) q(3) q(5) %C A325661 50 = q(1)^3 q(2)^2 q(3)^2 %C A325661 360 = q(1)^6 q(2)^3 q(3) %C A325661 Also Matula-Goebel numbers of rooted trees with no terminal subtree appearing at only one place in the tree. %H A325661 Charlie Neder, <a href="/A325661/b325661.txt">Table of n, a(n) for n = 1..1071</a> (Terms <= 100000) %e A325661 The sequence of terms together with their q-signatures begins: %e A325661 1: {} %e A325661 4: {2} %e A325661 8: {3} %e A325661 9: {2,2} %e A325661 16: {4} %e A325661 18: {3,2} %e A325661 25: {2,2,2} %e A325661 27: {3,3} %e A325661 32: {5} %e A325661 36: {4,2} %e A325661 49: {4,2} %e A325661 50: {3,2,2} %e A325661 54: {4,3} %e A325661 64: {6} %e A325661 72: {5,2} %e A325661 75: {3,3,2} %e A325661 81: {4,4} %e A325661 98: {5,2} %e A325661 100: {4,2,2} %t A325661 difac[n_]:=If[n==1,{},With[{i=PrimePi[FactorInteger[n][[1,1]]]},Sort[Prepend[difac[n*i/Prime[i]],i]]]]; %t A325661 Select[Range[100],Count[Length/@Split[difac[#]],1]==0&] %Y A325661 Cf. A001222, A001221, A001694, A056239, A112798, A124010. %Y A325661 Matula-Goebel numbers: A007097, A061775, A109129, A196050, A317713. %Y A325661 q-factorization: A324922, A324923, A324924, A325615, A325660. %K A325661 nonn %O A325661 1,2 %A A325661 _Gus Wiseman_, May 13 2019