This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325662 #20 Jul 26 2024 08:57:39 %S A325662 1,2,3,4,5,8,9,11,16,25,27,31,32,64,81,121,125,127,128,243,256,512, %T A325662 625,709,729,961,1024,1331,2048,2187,3125,4096,5381,6561,8192,14641, %U A325662 15625,16129,16384,19683,29791,32768,52711,59049,65536,78125,131072,161051 %N A325662 Matula-Goebel numbers of regular rooted stars. %C A325662 Powers of members of A007097. %C A325662 A regular rooted star is a rooted tree whose branches are all rooted paths of equal length. %C A325662 The number of terms <= 10^k, k=0,1,2,...: 1, 7, 15, 26, 35, 46, 56, 67, 76, 87, 98, 109, 121, 131, 142, 154, 163, 175, 185, 198, 208, 220, 231, 241, 254, 265, 275, etc. - _Robert G. Wilson v_, May 13 2019 %H A325662 Robert G. Wilson v, <a href="/A325662/b325662.txt">Table of n, a(n) for n = 1..275</a> (terms 1..48 from _Gus Wiseman_) %F A325662 Sum_{n>=1} 1/a(n) = 1 + Product_{k>=1} 1/(A007097(k)-1) = 2.8928887669834086909... - _Amiram Eldar_, Jul 26 2024 %e A325662 The sequence of regular rooted stars together with their Matula-Goebel numbers begins: %e A325662 1: o %e A325662 2: (o) %e A325662 3: ((o)) %e A325662 4: (oo) %e A325662 5: (((o))) %e A325662 8: (ooo) %e A325662 9: ((o)(o)) %e A325662 11: ((((o)))) %e A325662 16: (oooo) %e A325662 25: (((o))((o))) %e A325662 27: ((o)(o)(o)) %e A325662 31: (((((o))))) %e A325662 32: (ooooo) %e A325662 64: (oooooo) %e A325662 81: ((o)(o)(o)(o)) %e A325662 121: ((((o)))(((o)))) %e A325662 125: (((o))((o))((o))) %e A325662 127: ((((((o)))))) %e A325662 128: (ooooooo) %t A325662 rpQ[n_]:=n==1||PrimeQ[n]&&rpQ[PrimePi[n]]; %t A325662 Select[Range[100],#==1||PrimePowerQ[#]&&rpQ[FactorInteger[#][[1,1]]]&] %t A325662 (* generates terms <= A007097(max) *) seq[max_] := Module[{ps = NestList[Prime@# &, 1, max], psmax, s = {1}, emax, s1}, pmax = Max[ps]; Do[p = ps[[k]]; emax = Floor[Log[p, pmax]]; s1 = p^Range[emax]; s = Union[s, s1], {k, 2, Length[ps]}]; s]; seq[10] (* _Amiram Eldar_, Jul 26 2024 *) %Y A325662 Cf. A007097, A056239, A061775, A109082, A109129, A112798, A196050, A324924, A325614, A325661, A325663. %K A325662 nonn %O A325662 1,2 %A A325662 _Gus Wiseman_, May 13 2019