This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325663 #11 Jul 26 2024 08:12:06 %S A325663 1,2,3,4,5,6,8,9,10,11,12,15,16,18,20,22,24,25,27,30,31,32,33,36,40, %T A325663 44,45,48,50,54,55,60,62,64,66,72,75,80,81,88,90,93,96,99,100,108,110, %U A325663 120,121,124,125,127,128,132,135,144,150,155,160,162,165,176 %N A325663 Matula-Goebel numbers of not necessarily regular rooted stars. %C A325663 Products of members of A007097. %C A325663 A rooted star is a rooted tree whose branches are all rooted paths. %H A325663 Amiram Eldar, <a href="/A325663/b325663.txt">Table of n, a(n) for n = 1..10538</a> (terms up to A007097(12)) %F A325663 Sum_{n>=1} 1/a(n) = Product_{k>=1} A007097(k)/(A007097(k)-1) = 4.30328607286382284593... . - _Amiram Eldar_, Jul 26 2024 %e A325663 The sequence of rooted stars together with their Matula-Goebel numbers begins: %e A325663 1: o %e A325663 2: (o) %e A325663 3: ((o)) %e A325663 4: (oo) %e A325663 5: (((o))) %e A325663 6: (o(o)) %e A325663 8: (ooo) %e A325663 9: ((o)(o)) %e A325663 10: (o((o))) %e A325663 11: ((((o)))) %e A325663 12: (oo(o)) %e A325663 15: ((o)((o))) %e A325663 16: (oooo) %e A325663 18: (o(o)(o)) %e A325663 20: (oo((o))) %e A325663 22: (o(((o)))) %e A325663 24: (ooo(o)) %e A325663 25: (((o))((o))) %e A325663 27: ((o)(o)(o)) %e A325663 30: (o(o)((o))) %t A325663 rpQ[n_]:=n==1||PrimeQ[n]&&rpQ[PrimePi[n]]; %t A325663 Select[Range[100],And@@rpQ/@First/@FactorInteger[#]&] %t A325663 (* generates terms <= A007097(max) *) seq[max_] := Module[{ps = NestList[Prime@# &, 1, max], psmax, s = {1}, emax, s1, s2}, pmax = Max[ps]; Do[p = ps[[k]]; emax = Floor[Log[p, pmax]]; s1 = p^Range[0, emax]; s2 = Select[Union[Flatten[Outer[Times, s, s1]]], # <= pmax &]; s = Union[s, s2], {k, 2, Length[ps]}]; s]; seq[7] (* _Amiram Eldar_, Jul 26 2024 *) %Y A325663 Cf. A007097, A056239, A061775, A109082, A109129, A112798, A196050, A324924, A325614, A325661, A325662. %K A325663 nonn %O A325663 1,2 %A A325663 _Gus Wiseman_, May 13 2019