This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325664 #16 Jun 18 2019 13:36:22 %S A325664 1,0,1,-3,7,-15,30,-55,90,-125,125,0,-450,1625,-4250,9500,-18999, %T A325664 34357,-55454,75735,-70890,-26333,379049,-1352078,3713650,-9000225, %U A325664 20136806,-42409968,84819937,-161567265,292710630,-501416815,801992970,-1167081365,1453179125 %N A325664 First term of n-th difference sequence of (floor[k*r]), r = sqrt(2), k >= 0. %H A325664 Clark Kimberling, <a href="/A325664/b325664.txt">Table of n, a(n) for n = 1..200</a> %F A325664 From _Robert Israel_, Jun 04 2019: (Start) %F A325664 a(n) = Sum_{0<=k<=n} (-1)^(n-k)*binomial(n,k)*A001951(k). %F A325664 G.f.: g(x) = (1+x)^(-1)*h(x/(1+x)) where h is the G.f. of A001951. (End) %e A325664 The sequence (floor(k*r)) for k>=0: 0, 1, 2, 4, 5, 7, 8, 9, 11, 12, ... %e A325664 1st difference sequence: 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, ... %e A325664 2nd difference sequence: 0, 1, -1, 1, -1, 0, 1, -1, 1, -1, 0, 1, -1, ... %e A325664 3rd difference sequence: 1, -2, 2, -2, 1, 1, -2, 2, -2, 1, 1, -2, 2, ... %e A325664 4th difference sequence: -3, 4, -4, 3, 0, -3, 4, -4, 3, 0, -3, 4, -4, ... %e A325664 5th difference sequence: 7, -8, 7, -3, -3, 7, -8, 7, -3, -3, 7, -8, 7, ... %p A325664 N:= 50: # for a(1)..a(N) %p A325664 L:= [seq(floor(sqrt(2)*n),n=0..N)]: Res:= NULL: %p A325664 for i from 1 to N do %p A325664 L:= L[2..-1]-L[1..-2]; %p A325664 Res:= Res, L[1]; %p A325664 od: %p A325664 Res; # _Robert Israel_, Jun 04 2019 %t A325664 Table[First[Differences[Table[Floor[Sqrt[2]*n], {n, 0, 50}], n]], {n, 1, 50}] %Y A325664 Cf. A001951. %Y A325664 Guide to related sequences: %Y A325664 A325664, r = sqrt(2) %Y A325664 A325665, r = -sqrt(2) %Y A325664 A325666, r = sqrt(3) %Y A325664 A325667, r = -sqrt(3) %Y A325664 A325668, r = sqrt(5) %Y A325664 A325669, r = -sqrt(5) %Y A325664 A325670, r = sqrt(6) %Y A325664 A325671, r = -sqrt(6) %Y A325664 A325672, r = sqrt(7) %Y A325664 A325673, r = -sqrt(7) %Y A325664 A325674, r = sqrt(8) %Y A325664 A325675, r = -sqrt(8) %Y A325664 A325729, r = sqrt(1/2) %Y A325664 A325730, r = sqrt(1/3) %Y A325664 A325731, r = sqrt(2/3) %Y A325664 A325732, r = sqrt(3/4) %Y A325664 A325733, r = 1/2 + sqrt(2) %Y A325664 A325734, r = e %Y A325664 A325735, r = -e %Y A325664 A325736, r = 2e %Y A325664 A325737, r = 3e %Y A325664 A325738, r = e/2 %Y A325664 A325739, r = Pi %Y A325664 A325740, r = 2Pi %Y A325664 A325741, r = Pi/2 %Y A325664 A325742, r = Pi/3 %Y A325664 A325743, r = Pi/4 %Y A325664 A325744, r = Pi/6 %Y A325664 A325745, r = tau = golden ratio = (1 + sqrt(5))/2 %Y A325664 A325746, r = -tau %Y A325664 A325747, r = tau^2 = 1 + tau %Y A325664 A325748, r = 1/e %Y A325664 A325749, r = e/(e-1) %Y A325664 A325750, r = (1+sqrt(3))/2 %Y A325664 A325751, r = log 2 %Y A325664 A325752, r = log 3 %K A325664 easy,sign %O A325664 1,4 %A A325664 _Clark Kimberling_, May 12 2019