This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325676 #23 Feb 12 2022 10:42:28 %S A325676 1,1,2,4,5,10,12,24,26,47,50,96,104,172,188,322,335,552,590,938,1002, %T A325676 1612,1648,2586,2862,4131,4418,6718,7122,10332,11166,15930,17446, %U A325676 24834,26166,37146,41087,55732,59592,84068,89740,122106,133070,177876,194024,262840,278626 %N A325676 Number of compositions of n such that every distinct consecutive subsequence has a different sum. %C A325676 A composition of n is a finite sequence of positive integers summing to n. %C A325676 Compare to the definition of knapsack partitions (A108917). %H A325676 Fausto A. C. Cariboni, <a href="/A325676/b325676.txt">Table of n, a(n) for n = 0..100</a> %e A325676 The distinct consecutive subsequences of (1,4,4,3) together with their sums are: %e A325676 1: {1} %e A325676 3: {3} %e A325676 4: {4} %e A325676 5: {1,4} %e A325676 7: {4,3} %e A325676 8: {4,4} %e A325676 9: {1,4,4} %e A325676 11: {4,4,3} %e A325676 12: {1,4,4,3} %e A325676 Because the sums are all different, (1,4,4,3) is counted under a(12). %e A325676 The a(1) = 1 through a(6) = 12 compositions: %e A325676 (1) (2) (3) (4) (5) (6) %e A325676 (11) (12) (13) (14) (15) %e A325676 (21) (22) (23) (24) %e A325676 (111) (31) (32) (33) %e A325676 (1111) (41) (42) %e A325676 (113) (51) %e A325676 (122) (114) %e A325676 (221) (132) %e A325676 (311) (222) %e A325676 (11111) (231) %e A325676 (411) %e A325676 (111111) %t A325676 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@Total/@Union[ReplaceList[#,{___,s__,___}:>{s}]]&]],{n,0,15}] %Y A325676 Cf. A000079, A103295, A108917, A169942, A235998, A321143. %Y A325676 Cf. A325466, A325545, A325680, A325682, A325685, A325687, A325688. %K A325676 nonn %O A325676 0,3 %A A325676 _Gus Wiseman_, May 13 2019 %E A325676 a(21)-a(22) from _Jinyuan Wang_, Jun 20 2020 %E A325676 a(23)-a(25) from _Robert Price_, Jun 19 2021 %E A325676 a(26)-a(46) from _Fausto A. C. Cariboni_, Feb 10 2022