This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325677 #10 Feb 16 2025 08:33:58 %S A325677 1,1,1,2,1,2,1,4,1,4,2,1,6,6,1,6,8,1,8,18,1,8,16,1,10,30,4,1,10,34,14, %T A325677 1,12,48,28,1,12,48,42,1,14,72,76,1,14,72,100,1,16,96,160,8,1,16,98, %U A325677 190,8,1,18,126,284,40,1,18,128,316,70 %N A325677 Irregular triangle read by rows where T(n,k) is the number of Golomb rulers of length n with k + 1 marks, k > 0. %C A325677 Also the number of length-k compositions of n such that every restriction to a subinterval has a different sum. A composition of n is a finite sequence of positive integers summing to n. %H A325677 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GolombRuler.html">Golomb Ruler.</a> %e A325677 Triangle begins: %e A325677 1 %e A325677 1 %e A325677 1 2 %e A325677 1 2 %e A325677 1 4 %e A325677 1 4 2 %e A325677 1 6 6 %e A325677 1 6 8 %e A325677 1 8 18 %e A325677 1 8 16 %e A325677 1 10 30 4 %e A325677 1 10 34 14 %e A325677 1 12 48 28 %e A325677 1 12 48 42 %e A325677 1 14 72 76 %e A325677 1 14 72 100 %e A325677 1 16 96 160 8 %e A325677 1 16 98 190 8 %e A325677 1 18 126 284 40 %e A325677 1 18 128 316 70 %e A325677 Row n = 8 counts the following rulers: %e A325677 {0,8} {0,1,8} {0,1,3,8} %e A325677 {0,2,8} {0,1,5,8} %e A325677 {0,3,8} {0,1,6,8} %e A325677 {0,5,8} {0,2,3,8} %e A325677 {0,6,8} {0,2,7,8} %e A325677 {0,7,8} {0,3,7,8} %e A325677 {0,5,6,8} %e A325677 {0,5,7,8} %e A325677 and the following compositions: %e A325677 (8) (17) (125) %e A325677 (26) (143) %e A325677 (35) (152) %e A325677 (53) (215) %e A325677 (62) (251) %e A325677 (71) (341) %e A325677 (512) %e A325677 (521) %t A325677 DeleteCases[Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{k}],UnsameQ@@ReplaceList[#,{___,s__,___}:>Plus[s]]&]],{n,15},{k,n}],0,{2}] %Y A325677 Row sums are A169942. %Y A325677 Row lengths are A325678(n) = A143824(n + 1) - 1. %Y A325677 Column k = 2 is A052928. %Y A325677 Column k = 3 is A325686. %Y A325677 Rightmost column is A325683. %Y A325677 Cf. A000079, A007318, A103295, A108917, A143823, A325676, A325679, A325687. %K A325677 nonn,tabf %O A325677 1,4 %A A325677 _Gus Wiseman_, May 13 2019