cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325684 Number of minimal complete rulers of length n.

This page as a plain text file.
%I A325684 #11 Feb 27 2022 05:46:02
%S A325684 1,1,1,2,3,4,5,12,12,24,40,46,92,133,192,308,546,710,1108,1754,2726,
%T A325684 3878,5928,9260,14238,20502,30812,48378,72232,105744,160308,241592,
%U A325684 362348,540362,797750,1183984,1786714
%N A325684 Number of minimal complete rulers of length n.
%C A325684 A complete ruler of length n is a subset of {0..n} containing 0 and n and such that the differences of distinct terms (up to sign) cover an initial interval of positive integers.
%C A325684 Also the number of maximal (most coarse) compositions of n whose consecutive subsequence-sums cover an initial interval of positive integers.
%e A325684 The a(1) = 1 through a(7) = 12 rulers:
%e A325684   {0,1}  {0,1,2}  {0,1,3}  {0,1,2,4}  {0,1,2,5}  {0,1,4,6}    {0,1,2,3,7}
%e A325684                   {0,2,3}  {0,1,3,4}  {0,1,3,5}  {0,2,5,6}    {0,1,2,4,7}
%e A325684                            {0,2,3,4}  {0,2,4,5}  {0,1,2,3,6}  {0,1,2,5,7}
%e A325684                                       {0,3,4,5}  {0,1,3,5,6}  {0,1,3,5,7}
%e A325684                                                  {0,3,4,5,6}  {0,1,3,6,7}
%e A325684                                                               {0,1,4,5,7}
%e A325684                                                               {0,1,4,6,7}
%e A325684                                                               {0,2,3,6,7}
%e A325684                                                               {0,2,4,6,7}
%e A325684                                                               {0,2,5,6,7}
%e A325684                                                               {0,3,5,6,7}
%e A325684                                                               {0,4,5,6,7}
%e A325684 The a(1) = 1 through a(9) = 24 compositions:
%e A325684   (1)  (11)  (12)  (112)  (113)  (132)   (1114)  (1133)   (1143)
%e A325684              (21)  (121)  (122)  (231)   (1123)  (1241)   (1332)
%e A325684                    (211)  (221)  (1113)  (1132)  (1322)   (2331)
%e A325684                           (311)  (1221)  (1222)  (1412)   (3411)
%e A325684                                  (3111)  (1231)  (1421)   (11115)
%e A325684                                          (1312)  (2141)   (11124)
%e A325684                                          (1321)  (2231)   (11142)
%e A325684                                          (2131)  (3311)   (11241)
%e A325684                                          (2221)  (11114)  (11322)
%e A325684                                          (2311)  (11132)  (12141)
%e A325684                                          (3211)  (23111)  (12222)
%e A325684                                          (4111)  (41111)  (12231)
%e A325684                                                           (12312)
%e A325684                                                           (13221)
%e A325684                                                           (14112)
%e A325684                                                           (14121)
%e A325684                                                           (14211)
%e A325684                                                           (21141)
%e A325684                                                           (21321)
%e A325684                                                           (22221)
%e A325684                                                           (22311)
%e A325684                                                           (24111)
%e A325684                                                           (42111)
%e A325684                                                           (51111)
%t A325684 fasmin[y_]:=Complement[y,Union@@Table[Union[s,#]&/@Rest[Subsets[Complement[Union@@y,s]]],{s,y}]];
%t A325684 Table[Length[fasmin[Accumulate/@Select[Join@@Permutations/@IntegerPartitions[n],SubsetQ[ReplaceList[#,{___,s__,___}:>Plus[s]],Range[n]]&]]],{n,0,15}]
%Y A325684 Cf. A000079, A103295, A126796, A143823, A169942, A325677, A325683, A325685.
%K A325684 nonn,more
%O A325684 0,4
%A A325684 _Gus Wiseman_, May 13 2019
%E A325684 a(16)-a(36) from _Fausto A. C. Cariboni_, Feb 27 2022