This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325685 #19 Feb 21 2022 14:55:30 %S A325685 1,1,1,3,1,5,3,5,3,9,1,9,5,7,5,11,1,13,5,9,5,13,3,13,7,9,5,17,1,17,5, %T A325685 9,9,15,5,15,5,13,5,21,1,17,9,9,9,17,3,21,7,13,5,17,5,21,9,13,5,21,1, %U A325685 21,9,11,13,19,5,17,5,17,5,29,1,21,9,9,13,17,5,25,7,17,7 %N A325685 Number of compositions of n whose distinct consecutive subsequences have different sums, and such that these sums cover an initial interval of positive integers. %C A325685 A composition of n is a finite sequence of positive integers summing to n. %C A325685 Compare to the definition of perfect partitions (A002033). %H A325685 Fausto A. C. Cariboni, <a href="/A325685/b325685.txt">Table of n, a(n) for n = 0..100</a> %H A325685 Fausto A. C. Cariboni, <a href="/A325685/a325685.txt">All compositions that yield a(n) for n = 1..100</a>, Feb 21 2022. %e A325685 The distinct consecutive subsequences of (3,4,1,1) together with their sums are: %e A325685 1: {1} %e A325685 2: {1,1} %e A325685 3: {3} %e A325685 4: {4} %e A325685 5: {4,1} %e A325685 6: {4,1,1} %e A325685 7: {3,4} %e A325685 8: {3,4,1} %e A325685 9: {3,4,1,1} %e A325685 Because the sums are all different and cover {1...9}, it follows that (3,4,1,1) is counted under a(9). %e A325685 The a(1) = 1 through a(9) = 9 compositions: %e A325685 1 11 12 1111 113 132 1114 1133 1143 %e A325685 21 122 231 1222 3311 1332 %e A325685 111 221 111111 2221 11111111 2331 %e A325685 311 4111 3411 %e A325685 11111 1111111 11115 %e A325685 12222 %e A325685 22221 %e A325685 51111 %e A325685 111111111 %t A325685 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Sort[Total/@Union[ReplaceList[#,{___,s__,___}:>{s}]]]==Range[n]&]],{n,0,15}] %Y A325685 Cf. A000079, A002033, A103295, A126796, A143823, A169942, A325676, A325677, A325683, A325684. %K A325685 nonn %O A325685 0,4 %A A325685 _Gus Wiseman_, May 13 2019 %E A325685 a(21)-a(25) from _Jinyuan Wang_, Jun 26 2020 %E A325685 a(21)-a(25) corrected, a(26)-a(80) from _Fausto A. C. Cariboni_, Feb 21 2022