This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325686 #21 Jun 08 2025 21:43:53 %S A325686 0,0,0,0,0,0,2,6,8,18,16,30,34,48,48,72,72,96,98,126,128,162,160,198, %T A325686 202,240,240,288,288,336,338,390,392,450,448,510,514,576,576,648,648, %U A325686 720,722,798,800,882,880,966,970,1056,1056,1152,1152,1248,1250,1350,1352 %N A325686 Number of strict length-3 compositions x + y + z = n satisfying x + y != z and x != y + z. %C A325686 A strict composition of n is a finite sequence of distinct positive integers summing to n. %C A325686 From _Kevin O'Bryant_, Jun 02 2025: (Start) %C A325686 Also the number of Sidon sets in {0,1,...,n} with 4 elements that contain both 0 and n. %C A325686 Also, the number of 3-tuples of positive integers with the 6 numbers x, y, z, x+y, y+z, x+y+z=n all distinct. (End) %H A325686 Fausto A. C. Cariboni, <a href="/A325686/b325686.txt">Table of n, a(n) for n = 0..5000</a> %F A325686 Conjectures from _Colin Barker_, May 14 2019: (Start) %F A325686 G.f.: 2*x^6*(1 + 3*x + 3*x^2 + 5*x^3) / ((1 - x)^3*(1 + x)^2*(1 + x^2)*(1 + x + x^2)). %F A325686 a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-5) - a(n-6) - a(n-7) + a(n-9) for n>9. (End) %F A325686 Above conjecture confirmed for n <= 5000. - _Fausto A. C. Cariboni_, Feb 17 2022 %e A325686 The a(6) = 2 through a(10) = 16 compositions: %e A325686 (132) (124) (125) (126) (127) %e A325686 (231) (142) (143) (135) (136) %e A325686 (214) (152) (153) (154) %e A325686 (241) (215) (162) (163) %e A325686 (412) (251) (216) (172) %e A325686 (421) (341) (234) (217) %e A325686 (512) (243) (253) %e A325686 (521) (261) (271) %e A325686 (315) (316) %e A325686 (324) (352) %e A325686 (342) (361) %e A325686 (351) (451) %e A325686 (423) (613) %e A325686 (432) (631) %e A325686 (513) (712) %e A325686 (531) (721) %e A325686 (612) %e A325686 (621) %t A325686 Table[Length[Cases[Join@@Permutations/@IntegerPartitions[n,{3}],{x_,y_,z_}/;x!=y!=z&&x+y!=z &&x!=y+z]],{n,0,30}] %Y A325686 Column k = 3 of A325677. %Y A325686 Cf. A000079, A001399, A005044, A108917, A124278, A143823, A266223, A275972. %Y A325686 Cf. A325676, A325688, A325689, A325690, A325691. %K A325686 nonn %O A325686 0,7 %A A325686 _Gus Wiseman_, May 13 2019