This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325687 #5 May 14 2019 22:08:32 %S A325687 1,1,1,1,2,1,1,3,0,1,1,4,4,0,1,1,5,5,0,0,1,1,6,12,4,0,0,1,1,7,12,5,0, %T A325687 0,0,1,1,8,25,8,4,0,0,0,1,1,9,24,12,3,0,0,0,0,1,1,10,40,32,8,4,0,0,0, %U A325687 0,1,1,11,41,41,6,3,0,0,0,0,0,1 %N A325687 Triangle read by rows where T(n,k) is the number of length-k compositions of n such that every distinct consecutive subsequence has a different sum. %C A325687 A composition of n is a finite sequence of positive integers summing to n. %e A325687 The distinct consecutive subsequences of (1,1,3,3) are (1), (1,1), (3), (1,3), (1,1,3), (3,3), (1,3,3), (1,1,3,3), all of which have different sums, so (1,1,3,3) is counted under a(8). %e A325687 Triangle begins: %e A325687 1 %e A325687 1 1 %e A325687 1 2 1 %e A325687 1 3 0 1 %e A325687 1 4 4 0 1 %e A325687 1 5 5 0 0 1 %e A325687 1 6 12 4 0 0 1 %e A325687 1 7 12 5 0 0 0 1 %e A325687 1 8 25 8 4 0 0 0 1 %e A325687 1 9 24 12 3 0 0 0 0 1 %e A325687 1 10 40 32 8 4 0 0 0 0 1 %e A325687 1 11 41 41 6 3 0 0 0 0 0 1 %e A325687 1 12 60 76 14 4 4 0 0 0 0 0 1 %e A325687 1 13 60 88 16 6 3 0 0 0 0 0 0 1 %e A325687 Row n = 8 counts the following compositions: %e A325687 (8) (17) (116) (1115) (11111111) %e A325687 (26) (125) (1133) %e A325687 (35) (143) (2222) %e A325687 (44) (152) (3311) %e A325687 (53) (215) (5111) %e A325687 (62) (233) %e A325687 (71) (251) %e A325687 (332) %e A325687 (341) %e A325687 (512) %e A325687 (521) %e A325687 (611) %t A325687 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{k}],UnsameQ@@Total/@Union[ReplaceList[#,{___,s__,___}:>{s}]]&]],{n,15},{k,n}] %Y A325687 Row sums are A325676. %Y A325687 Column k = 2 is A000027. %Y A325687 Column k = 3 is A325688. %Y A325687 Cf. A000079, A007318, A048004, A108917, A143823, A169942, A266223, A325592, A325680, A325685. %K A325687 nonn,tabl %O A325687 1,5 %A A325687 _Gus Wiseman_, May 13 2019