A325688 Number of length-3 compositions of n such that every distinct consecutive subsequence has a different sum.
0, 0, 0, 1, 0, 4, 5, 12, 12, 25, 24, 40, 41, 60, 60, 85, 84, 112, 113, 144, 144, 181, 180, 220, 221, 264, 264, 313, 312, 364, 365, 420, 420, 481, 480, 544, 545, 612, 612, 685, 684, 760, 761, 840, 840, 925, 924, 1012, 1013, 1104, 1104, 1201, 1200, 1300, 1301, 1404
Offset: 0
Keywords
Examples
The a(3) = 1 through a(8) = 12 compositions: (111) (113) (114) (115) (116) (122) (132) (124) (125) (221) (222) (133) (143) (311) (231) (142) (152) (411) (214) (215) (223) (233) (241) (251) (322) (332) (331) (341) (412) (512) (421) (521) (511) (611)
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 0..5000
Crossrefs
Programs
Formula
Conjectures from Colin Barker, May 16 2019: (Start)
G.f.: x^3*(1 + 2*x^2 + 4*x^3 + 5*x^4) / ((1 - x)^3*(1 + x)^2*(1 + x + x^2)).
a(n) = 2*a(n-2) + a(n-3) - a(n-4) - 2*a(n-5) + a(n-7) for n>7.
(End)
Comments