cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325690 Number of length-3 integer partitions of n whose largest part is not the sum of the other two.

This page as a plain text file.
%I A325690 #14 Feb 19 2022 20:28:03
%S A325690 0,0,0,1,0,2,2,4,3,7,6,10,9,14,13,19,17,24,23,30,28,37,35,44,42,52,50,
%T A325690 61,58,70,68,80,77,91,88,102,99,114,111,127,123,140,137,154,150,169,
%U A325690 165,184,180,200,196,217,212,234,230,252,247,271,266,290,285,310
%N A325690 Number of length-3 integer partitions of n whose largest part is not the sum of the other two.
%C A325690 Confirmed recurrence relation from _Colin Barker_ for n <= 10000. - _Fausto A. C. Cariboni_, Feb 19 2022
%H A325690 Fausto A. C. Cariboni, <a href="/A325690/b325690.txt">Table of n, a(n) for n = 0..10000</a>
%F A325690 Conjectures from _Colin Barker_, May 15 2019: (Start)
%F A325690 G.f.: x^3*(1 + x^2 + x^3 + x^4) / ((1 - x)^3*(1 + x)^2*(1 + x^2)*(1 + x + x^2)).
%F A325690 a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-5) - a(n-6) - a(n-7) + a(n-9) for n>8.
%F A325690 (End)
%e A325690 The a(3) = 1 through a(13) = 14 partitions (A = 10, B = 11):
%e A325690   (111)  (221)  (222)  (322)  (332)  (333)  (433)  (443)  (444)   (544)
%e A325690          (311)  (411)  (331)  (521)  (432)  (442)  (533)  (543)   (553)
%e A325690                        (421)  (611)  (441)  (622)  (542)  (552)   (643)
%e A325690                        (511)         (522)  (631)  (551)  (732)   (652)
%e A325690                                      (531)  (721)  (632)  (741)   (661)
%e A325690                                      (621)  (811)  (641)  (822)   (733)
%e A325690                                      (711)         (722)  (831)   (742)
%e A325690                                                    (731)  (921)   (751)
%e A325690                                                    (821)  (A11)   (832)
%e A325690                                                    (911)          (841)
%e A325690                                                                   (922)
%e A325690                                                                   (931)
%e A325690                                                                   (A21)
%e A325690                                                                   (B11)
%t A325690 Table[Length[Select[IntegerPartitions[n,{3}],#[[1]]!=#[[2]]+#[[3]]&]],{n,0,30}]
%Y A325690 Column k = 3 of A325592.
%Y A325690 Cf. A000041, A001399, A005044, A008642, A069905, A266223.
%Y A325690 Cf. A325689, A325691, A325694.
%K A325690 nonn
%O A325690 0,6
%A A325690 _Gus Wiseman_, May 15 2019