cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325694 Numbers with one fewer divisors than the sum of their prime indices.

This page as a plain text file.
%I A325694 #5 May 28 2019 19:38:25
%S A325694 5,9,14,15,44,45,50,78,104,105,110,135,196,225,272,276,342,380,405,
%T A325694 476,572,585,608,650,693,726,735,825,888,930,968,1125,1215,1218,1240,
%U A325694 1472,1476,1482,1518,1566,1610,1624,1976,1995,2024,2090,2210,2256,2565,2618
%N A325694 Numbers with one fewer divisors than the sum of their prime indices.
%C A325694 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with sum A056239(n).
%C A325694 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of the partitions counted by A325836.
%e A325694 The sequence of terms together with their prime indices begins:
%e A325694      5: {3}
%e A325694      9: {2,2}
%e A325694     14: {1,4}
%e A325694     15: {2,3}
%e A325694     44: {1,1,5}
%e A325694     45: {2,2,3}
%e A325694     50: {1,3,3}
%e A325694     78: {1,2,6}
%e A325694    104: {1,1,1,6}
%e A325694    105: {2,3,4}
%e A325694    110: {1,3,5}
%e A325694    135: {2,2,2,3}
%e A325694    196: {1,1,4,4}
%e A325694    225: {2,2,3,3}
%e A325694    272: {1,1,1,1,7}
%e A325694    276: {1,1,2,9}
%e A325694    342: {1,2,2,8}
%e A325694    380: {1,1,3,8}
%e A325694    405: {2,2,2,2,3}
%e A325694    476: {1,1,4,7}
%t A325694 Select[Range[1000],DivisorSigma[0,#]==Total[Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]]-1&]
%Y A325694 Positions of -1's in A325794.
%Y A325694 Cf. A000005, A056239, A112798, A325780, A325792, A325793, A325794, A325795, A325796, A325797, A325798, A325836.
%K A325694 nonn
%O A325694 1,1
%A A325694 _Gus Wiseman_, May 23 2019