This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325694 #5 May 28 2019 19:38:25 %S A325694 5,9,14,15,44,45,50,78,104,105,110,135,196,225,272,276,342,380,405, %T A325694 476,572,585,608,650,693,726,735,825,888,930,968,1125,1215,1218,1240, %U A325694 1472,1476,1482,1518,1566,1610,1624,1976,1995,2024,2090,2210,2256,2565,2618 %N A325694 Numbers with one fewer divisors than the sum of their prime indices. %C A325694 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with sum A056239(n). %C A325694 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of the partitions counted by A325836. %e A325694 The sequence of terms together with their prime indices begins: %e A325694 5: {3} %e A325694 9: {2,2} %e A325694 14: {1,4} %e A325694 15: {2,3} %e A325694 44: {1,1,5} %e A325694 45: {2,2,3} %e A325694 50: {1,3,3} %e A325694 78: {1,2,6} %e A325694 104: {1,1,1,6} %e A325694 105: {2,3,4} %e A325694 110: {1,3,5} %e A325694 135: {2,2,2,3} %e A325694 196: {1,1,4,4} %e A325694 225: {2,2,3,3} %e A325694 272: {1,1,1,1,7} %e A325694 276: {1,1,2,9} %e A325694 342: {1,2,2,8} %e A325694 380: {1,1,3,8} %e A325694 405: {2,2,2,2,3} %e A325694 476: {1,1,4,7} %t A325694 Select[Range[1000],DivisorSigma[0,#]==Total[Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]]-1&] %Y A325694 Positions of -1's in A325794. %Y A325694 Cf. A000005, A056239, A112798, A325780, A325792, A325793, A325794, A325795, A325796, A325797, A325798, A325836. %K A325694 nonn %O A325694 1,1 %A A325694 _Gus Wiseman_, May 23 2019