This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325695 #10 Jun 18 2020 19:38:48 %S A325695 0,0,0,0,0,0,0,1,1,3,2,5,5,8,7,12,11,16,15,21,20,27,25,33,32,40,38,48, %T A325695 46,56,54,65,63,75,72,85,83,96,93,108,105,120,117,133,130,147,143,161, %U A325695 158,176,172,192,188,208,204,225,221,243,238,261,257,280,275 %N A325695 Number of length-3 strict integer partitions of n such that the largest part is not the sum of the other two. %F A325695 Conjectures from _Colin Barker_, May 15 2019: (Start) %F A325695 G.f.: x^7*(1 + x + 2*x^2) / ((1 - x)^3*(1 + x)^2*(1 + x^2)*(1 + x + x^2)). %F A325695 a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-5) - a(n-6) - a(n-7) + a(n-9) for n>9. %F A325695 (End) %F A325695 a(n) = A325696(n)/6. - _Alois P. Heinz_, Jun 18 2020 %e A325695 The a(7) = 1 through a(15) = 12 partitions (A = 10, B = 11, C = 12): %e A325695 (421) (521) (432) (631) (542) (543) (643) (653) (654) %e A325695 (531) (721) (632) (732) (652) (842) (753) %e A325695 (621) (641) (741) (742) (851) (762) %e A325695 (731) (831) (751) (932) (843) %e A325695 (821) (921) (832) (941) (852) %e A325695 (841) (A31) (861) %e A325695 (931) (B21) (942) %e A325695 (A21) (951) %e A325695 (A32) %e A325695 (A41) %e A325695 (B31) %e A325695 (C21) %t A325695 Table[Length[Select[IntegerPartitions[n,{3}],UnsameQ@@#&&#[[1]]!=#[[2]]+#[[3]]&]],{n,0,30}] %Y A325695 Cf. A000041, A001399, A005044, A008642, A069905, A124278. %Y A325695 Cf. A325686, A325690, A325691, A325694, A325696. %K A325695 nonn %O A325695 0,10 %A A325695 _Gus Wiseman_, May 15 2019