cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325695 Number of length-3 strict integer partitions of n such that the largest part is not the sum of the other two.

This page as a plain text file.
%I A325695 #10 Jun 18 2020 19:38:48
%S A325695 0,0,0,0,0,0,0,1,1,3,2,5,5,8,7,12,11,16,15,21,20,27,25,33,32,40,38,48,
%T A325695 46,56,54,65,63,75,72,85,83,96,93,108,105,120,117,133,130,147,143,161,
%U A325695 158,176,172,192,188,208,204,225,221,243,238,261,257,280,275
%N A325695 Number of length-3 strict integer partitions of n such that the largest part is not the sum of the other two.
%F A325695 Conjectures from _Colin Barker_, May 15 2019: (Start)
%F A325695 G.f.: x^7*(1 + x + 2*x^2) / ((1 - x)^3*(1 + x)^2*(1 + x^2)*(1 + x + x^2)).
%F A325695 a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-5) - a(n-6) - a(n-7) + a(n-9) for n>9.
%F A325695 (End)
%F A325695 a(n) = A325696(n)/6. - _Alois P. Heinz_, Jun 18 2020
%e A325695 The a(7) = 1 through a(15) = 12 partitions (A = 10, B = 11, C = 12):
%e A325695   (421)  (521)  (432)  (631)  (542)  (543)  (643)   (653)   (654)
%e A325695                 (531)  (721)  (632)  (732)  (652)   (842)   (753)
%e A325695                 (621)         (641)  (741)  (742)   (851)   (762)
%e A325695                               (731)  (831)  (751)   (932)   (843)
%e A325695                               (821)  (921)  (832)   (941)   (852)
%e A325695                                             (841)   (A31)   (861)
%e A325695                                             (931)   (B21)   (942)
%e A325695                                             (A21)           (951)
%e A325695                                                             (A32)
%e A325695                                                             (A41)
%e A325695                                                             (B31)
%e A325695                                                             (C21)
%t A325695 Table[Length[Select[IntegerPartitions[n,{3}],UnsameQ@@#&&#[[1]]!=#[[2]]+#[[3]]&]],{n,0,30}]
%Y A325695 Cf. A000041, A001399, A005044, A008642, A069905, A124278.
%Y A325695 Cf. A325686, A325690, A325691, A325694, A325696.
%K A325695 nonn
%O A325695 0,10
%A A325695 _Gus Wiseman_, May 15 2019