This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325696 #11 Jun 18 2020 19:38:36 %S A325696 0,0,0,0,0,0,0,6,6,18,12,30,30,48,42,72,66,96,90,126,120,162,150,198, %T A325696 192,240,228,288,276,336,324,390,378,450,432,510,498,576,558,648,630, %U A325696 720,702,798,780,882,858,966,948,1056,1032,1152,1128,1248,1224,1350 %N A325696 Number of length-3 strict compositions of n such that no part is the sum of the other two. %C A325696 A composition of n is a finite sequence of positive integers summing to n. It is strict if all parts are distinct. %F A325696 Conjectures from _Colin Barker_, May 16 2019: (Start) %F A325696 G.f.: 6*x^7*(1 + x + 2*x^2) / ((1 - x)^3*(1 + x)^2*(1 + x^2)*(1 + x + x^2)). %F A325696 a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-5) - a(n-6) - a(n-7) + a(n-9) for n>9. %F A325696 (End) %F A325696 a(n) = 6 * A325695(n). - _Alois P. Heinz_, Jun 18 2020 %e A325696 The a(6) = 6 through a(10) = 12 compositions: %e A325696 (124) (125) (126) (127) %e A325696 (142) (152) (135) (136) %e A325696 (214) (215) (153) (163) %e A325696 (241) (251) (162) (172) %e A325696 (412) (512) (216) (217) %e A325696 (421) (521) (234) (271) %e A325696 (243) (316) %e A325696 (261) (361) %e A325696 (315) (613) %e A325696 (324) (631) %e A325696 (342) (712) %e A325696 (351) (721) %e A325696 (423) %e A325696 (432) %e A325696 (513) %e A325696 (531) %e A325696 (612) %e A325696 (621) %t A325696 Table[Length[Cases[Join@@Permutations/@IntegerPartitions[n,{3}],{x_,y_,z_}/;x!=y!=z&&x+y!=z&&x!=y+z&&y!=x+z]],{n,0,30}] %Y A325696 Cf. A000079, A001399, A005044, A266223. %Y A325696 Cf. A325686, A325688, A325689 (non-strict case), A325695. %K A325696 nonn %O A325696 0,8 %A A325696 _Gus Wiseman_, May 15 2019