This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325698 #27 Apr 17 2022 01:55:05 %S A325698 1,6,14,15,26,33,35,36,38,51,58,65,69,74,77,84,86,90,93,95,106,119, %T A325698 122,123,141,142,143,145,156,158,161,177,178,185,196,198,201,202,209, %U A325698 210,214,215,216,217,219,221,225,226,228,249,262,265,278,287,291,299 %N A325698 Numbers with as many even as odd prime indices, counted with multiplicity. %C A325698 These are Heinz numbers of the integer partitions counted by A045931. %C A325698 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A325698 The integers in the multiplicative subgroup of positive rational numbers generated by the products of two consecutive primes (A006094). The sequence is closed under multiplication, prime shift (A003961), and - where the result is an integer - under division. Using these closures, all the terms can be derived from the presence of 6. For example, A003961(6) = 15, A003961(15) = 35, 6 * 35 = 210, 210/15 = 14. Closed also under A297845, since A297845 can be defined using squaring, prime shift and multiplication. - _Peter Munn_, Oct 05 2020 %H A325698 David A. Corneth, <a href="/A325698/b325698.txt">Table of n, a(n) for n = 1..10000</a> %e A325698 The sequence of terms together with their prime indices begins: %e A325698 1: {} %e A325698 6: {1,2} %e A325698 14: {1,4} %e A325698 15: {2,3} %e A325698 26: {1,6} %e A325698 33: {2,5} %e A325698 35: {3,4} %e A325698 36: {1,1,2,2} %e A325698 38: {1,8} %e A325698 51: {2,7} %e A325698 58: {1,10} %e A325698 65: {3,6} %e A325698 69: {2,9} %e A325698 74: {1,12} %e A325698 77: {4,5} %e A325698 84: {1,1,2,4} %e A325698 86: {1,14} %e A325698 90: {1,2,2,3} %e A325698 93: {2,11} %e A325698 95: {3,8} %t A325698 Select[Range[100],Total[Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>k*(-1)^PrimePi[p]]]==0&] %o A325698 (PARI) is(n) = {my(v = vector(2), f = factor(n));for(i = 1, #f~,v[1 + primepi(f[i, 1])%2]+=f[i, 2]);v[1] == v[2]} \\ _David A. Corneth_, Oct 06 2020 %o A325698 (Python) %o A325698 from sympy import factorint, primepi %o A325698 def ok(n): %o A325698 v = [0, 0] %o A325698 for p, e in factorint(n).items(): v[primepi(p)%2] += e %o A325698 return v[0] == v[1] %o A325698 print([k for k in range(300) if ok(k)]) # _Michael S. Branicky_, Apr 16 2022 after _David A. Corneth_ %Y A325698 Positions of 0's in A195017. %Y A325698 A257992(n) = A257991(n). %Y A325698 Cf. A000712, A001222, A001405, A006094, A026010, A045931, A063886, A097613, A112798, A130780, A171966, A239241, A241638, A325700. %Y A325698 Closed under: A003961, A003991, A297845. %Y A325698 Subsequence of A028260, A332820. %K A325698 nonn %O A325698 1,2 %A A325698 _Gus Wiseman_, May 17 2019