cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325698 Numbers with as many even as odd prime indices, counted with multiplicity.

This page as a plain text file.
%I A325698 #27 Apr 17 2022 01:55:05
%S A325698 1,6,14,15,26,33,35,36,38,51,58,65,69,74,77,84,86,90,93,95,106,119,
%T A325698 122,123,141,142,143,145,156,158,161,177,178,185,196,198,201,202,209,
%U A325698 210,214,215,216,217,219,221,225,226,228,249,262,265,278,287,291,299
%N A325698 Numbers with as many even as odd prime indices, counted with multiplicity.
%C A325698 These are Heinz numbers of the integer partitions counted by A045931.
%C A325698 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A325698 The integers in the multiplicative subgroup of positive rational numbers generated by the products of two consecutive primes (A006094). The sequence is closed under multiplication, prime shift (A003961), and - where the result is an integer - under division. Using these closures, all the terms can be derived from the presence of 6. For example, A003961(6) = 15, A003961(15) = 35, 6 * 35 = 210, 210/15 = 14. Closed also under A297845, since A297845 can be defined using squaring, prime shift and multiplication. - _Peter Munn_, Oct 05 2020
%H A325698 David A. Corneth, <a href="/A325698/b325698.txt">Table of n, a(n) for n = 1..10000</a>
%e A325698 The sequence of terms together with their prime indices begins:
%e A325698     1: {}
%e A325698     6: {1,2}
%e A325698    14: {1,4}
%e A325698    15: {2,3}
%e A325698    26: {1,6}
%e A325698    33: {2,5}
%e A325698    35: {3,4}
%e A325698    36: {1,1,2,2}
%e A325698    38: {1,8}
%e A325698    51: {2,7}
%e A325698    58: {1,10}
%e A325698    65: {3,6}
%e A325698    69: {2,9}
%e A325698    74: {1,12}
%e A325698    77: {4,5}
%e A325698    84: {1,1,2,4}
%e A325698    86: {1,14}
%e A325698    90: {1,2,2,3}
%e A325698    93: {2,11}
%e A325698    95: {3,8}
%t A325698 Select[Range[100],Total[Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>k*(-1)^PrimePi[p]]]==0&]
%o A325698 (PARI) is(n) = {my(v = vector(2), f = factor(n));for(i = 1, #f~,v[1 + primepi(f[i, 1])%2]+=f[i, 2]);v[1] == v[2]} \\ _David A. Corneth_, Oct 06 2020
%o A325698 (Python)
%o A325698 from sympy import factorint, primepi
%o A325698 def ok(n):
%o A325698     v = [0, 0]
%o A325698     for p, e in factorint(n).items(): v[primepi(p)%2] += e
%o A325698     return v[0] == v[1]
%o A325698 print([k for k in range(300) if ok(k)]) # _Michael S. Branicky_, Apr 16 2022 after _David A. Corneth_
%Y A325698 Positions of 0's in A195017.
%Y A325698 A257992(n) = A257991(n).
%Y A325698 Cf. A000712, A001222, A001405, A006094, A026010, A045931, A063886, A097613, A112798, A130780, A171966, A239241, A241638, A325700.
%Y A325698 Closed under: A003961, A003991, A297845.
%Y A325698 Subsequence of A028260, A332820.
%K A325698 nonn
%O A325698 1,2
%A A325698 _Gus Wiseman_, May 17 2019