This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325701 #5 May 17 2019 22:06:56 %S A325701 1,9,25,49,77,121,125,169,221,245,289,323,343,361,375,437,529,841,899, %T A325701 961,1331,1369,1517,1681,1763,1849,1859,2021,2197,2209,2401,2773,2809, %U A325701 2873,3127,3481,3721,3757,4087,4489,4757,4913,5041,5183,5329,5929,6137,6241 %N A325701 Nonprime Heinz numbers of integer partitions whose reciprocal factorial sum is the reciprocal of an integer. %C A325701 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A325701 The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!. %e A325701 The sequence of terms together with their prime indices begins: %e A325701 1: {} %e A325701 9: {2,2} %e A325701 25: {3,3} %e A325701 49: {4,4} %e A325701 77: {4,5} %e A325701 121: {5,5} %e A325701 125: {3,3,3} %e A325701 169: {6,6} %e A325701 221: {6,7} %e A325701 245: {3,4,4} %e A325701 289: {7,7} %e A325701 323: {7,8} %e A325701 343: {4,4,4} %e A325701 361: {8,8} %e A325701 375: {2,3,3,3} %e A325701 437: {8,9} %e A325701 529: {9,9} %e A325701 841: {10,10} %e A325701 899: {10,11} %e A325701 961: {11,11} %e A325701 For example, the sequence contains 245 because the prime indices of 245 are {3,4,4}, with reciprocal sum 1/6 + 1/24 + 1/24 = 1/4. %t A325701 Select[Range[1000],!PrimeQ[#]&&IntegerQ[1/Total[Cases[FactorInteger[#],{p_,k_}:>k/PrimePi[p]!]]]&] %Y A325701 Factorial numbers: A000142, A007489, A022559, A064986, A108731, A115944, A284605, A325508, A325616. %Y A325701 Reciprocal factorial sum: A002966, A316854, A316857, A325618, A325620, A325622, A325623. %K A325701 nonn %O A325701 1,2 %A A325701 _Gus Wiseman_, May 17 2019