cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325701 Nonprime Heinz numbers of integer partitions whose reciprocal factorial sum is the reciprocal of an integer.

This page as a plain text file.
%I A325701 #5 May 17 2019 22:06:56
%S A325701 1,9,25,49,77,121,125,169,221,245,289,323,343,361,375,437,529,841,899,
%T A325701 961,1331,1369,1517,1681,1763,1849,1859,2021,2197,2209,2401,2773,2809,
%U A325701 2873,3127,3481,3721,3757,4087,4489,4757,4913,5041,5183,5329,5929,6137,6241
%N A325701 Nonprime Heinz numbers of integer partitions whose reciprocal factorial sum is the reciprocal of an integer.
%C A325701 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%C A325701 The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.
%e A325701 The sequence of terms together with their prime indices begins:
%e A325701      1: {}
%e A325701      9: {2,2}
%e A325701     25: {3,3}
%e A325701     49: {4,4}
%e A325701     77: {4,5}
%e A325701    121: {5,5}
%e A325701    125: {3,3,3}
%e A325701    169: {6,6}
%e A325701    221: {6,7}
%e A325701    245: {3,4,4}
%e A325701    289: {7,7}
%e A325701    323: {7,8}
%e A325701    343: {4,4,4}
%e A325701    361: {8,8}
%e A325701    375: {2,3,3,3}
%e A325701    437: {8,9}
%e A325701    529: {9,9}
%e A325701    841: {10,10}
%e A325701    899: {10,11}
%e A325701    961: {11,11}
%e A325701 For example, the sequence contains 245 because the prime indices of 245 are {3,4,4}, with reciprocal sum 1/6 + 1/24 + 1/24 = 1/4.
%t A325701 Select[Range[1000],!PrimeQ[#]&&IntegerQ[1/Total[Cases[FactorInteger[#],{p_,k_}:>k/PrimePi[p]!]]]&]
%Y A325701 Factorial numbers: A000142, A007489, A022559, A064986, A108731, A115944, A284605, A325508, A325616.
%Y A325701 Reciprocal factorial sum: A002966, A316854, A316857, A325618, A325620, A325622, A325623.
%K A325701 nonn
%O A325701 1,2
%A A325701 _Gus Wiseman_, May 17 2019