cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325703 If n = prime(i_1)^j_1 * ... * prime(i_k)^j_k, then a(n) is the denominator of the reciprocal factorial sum j_1/i_1! + ... + j_k/i_k!.

Original entry on oeis.org

1, 1, 2, 1, 6, 2, 24, 1, 1, 6, 120, 2, 720, 24, 3, 1, 5040, 1, 40320, 6, 24, 120, 362880, 2, 3, 720, 2, 24, 3628800, 3, 39916800, 1, 120, 5040, 24, 1, 479001600, 40320, 720, 6, 6227020800, 24, 87178291200, 120, 6, 362880, 1307674368000, 2, 12, 3, 5040, 720
Offset: 1

Views

Author

Gus Wiseman, May 18 2019

Keywords

Comments

Alternatively, if n = prime(i_1) * ... * prime(i_k), then a(n) is the denominator of 1/i_1! + ... + 1/i_k!.

Crossrefs

Programs

  • Maple
    f:= proc(n) local F,t;
        F:= ifactors(n)[2];
        denom(add(t[2]/numtheory:-pi(t[1])!,t=F))
    end proc:
    map(f, [$1..100]); # Robert Israel, Oct 13 2024
  • Mathematica
    Table[Total[Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>k/PrimePi[p]!]],{n,100}]//Denominator

Formula

a(n) = A318574(A325709(n)).