A325703 If n = prime(i_1)^j_1 * ... * prime(i_k)^j_k, then a(n) is the denominator of the reciprocal factorial sum j_1/i_1! + ... + j_k/i_k!.
1, 1, 2, 1, 6, 2, 24, 1, 1, 6, 120, 2, 720, 24, 3, 1, 5040, 1, 40320, 6, 24, 120, 362880, 2, 3, 720, 2, 24, 3628800, 3, 39916800, 1, 120, 5040, 24, 1, 479001600, 40320, 720, 6, 6227020800, 24, 87178291200, 120, 6, 362880, 1307674368000, 2, 12, 3, 5040, 720
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..3168
- Gus Wiseman, Sequences counting and ranking integer partitions by their reciprocal sums
Crossrefs
Programs
-
Maple
f:= proc(n) local F,t; F:= ifactors(n)[2]; denom(add(t[2]/numtheory:-pi(t[1])!,t=F)) end proc: map(f, [$1..100]); # Robert Israel, Oct 13 2024
-
Mathematica
Table[Total[Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>k/PrimePi[p]!]],{n,100}]//Denominator
Comments