A325705 Number of integer partitions of n containing all of their distinct multiplicities.
1, 1, 0, 1, 3, 2, 4, 3, 7, 8, 16, 15, 24, 28, 39, 44, 68, 80, 98, 130, 167, 200, 259, 320, 396, 497, 601, 737, 910, 1107, 1335, 1631, 1983, 2372, 2887, 3439, 4166, 4949, 5940, 7043, 8450, 9980, 11884, 13984, 16679, 19493, 23162, 27050, 31937, 37334, 43926
Offset: 0
Keywords
Examples
The partition (4,2,1,1,1,1) has distinct multiplicities {1,4}, both of which belong to the partition, so it is counted under a(10). The a(0) = 1 through a(10) = 16 partitions: () (1) (21) (22) (41) (51) (61) (71) (81) (91) (31) (221) (321) (421) (431) (333) (541) (211) (2211) (3211) (521) (531) (631) (3111) (3221) (621) (721) (4211) (3321) (3322) (32111) (4221) (3331) (41111) (5211) (4321) (32211) (5221) (6211) (32221) (33211) (42211) (43111) (322111) (421111) (511111)
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],SubsetQ[Sort[#],Sort[Length/@Split[#]]]&]],{n,0,30}]
Comments