cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325705 Number of integer partitions of n containing all of their distinct multiplicities.

Original entry on oeis.org

1, 1, 0, 1, 3, 2, 4, 3, 7, 8, 16, 15, 24, 28, 39, 44, 68, 80, 98, 130, 167, 200, 259, 320, 396, 497, 601, 737, 910, 1107, 1335, 1631, 1983, 2372, 2887, 3439, 4166, 4949, 5940, 7043, 8450, 9980, 11884, 13984, 16679, 19493, 23162, 27050, 31937, 37334, 43926
Offset: 0

Views

Author

Gus Wiseman, May 18 2019

Keywords

Comments

The Heinz numbers of these partitions are given by A325706.

Examples

			The partition (4,2,1,1,1,1) has distinct multiplicities {1,4}, both of which belong to the partition, so it is counted under a(10).
The a(0) = 1 through a(10) = 16 partitions:
  ()  (1)  (21)  (22)   (41)   (51)    (61)    (71)     (81)     (91)
                 (31)   (221)  (321)   (421)   (431)    (333)    (541)
                 (211)         (2211)  (3211)  (521)    (531)    (631)
                               (3111)          (3221)   (621)    (721)
                                               (4211)   (3321)   (3322)
                                               (32111)  (4221)   (3331)
                                               (41111)  (5211)   (4321)
                                                        (32211)  (5221)
                                                                 (6211)
                                                                 (32221)
                                                                 (33211)
                                                                 (42211)
                                                                 (43111)
                                                                 (322111)
                                                                 (421111)
                                                                 (511111)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],SubsetQ[Sort[#],Sort[Length/@Split[#]]]&]],{n,0,30}]