cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325706 Heinz numbers of integer partitions containing all of their distinct multiplicities.

This page as a plain text file.
%I A325706 #5 May 18 2019 22:46:36
%S A325706 1,2,6,9,10,12,14,18,22,26,30,34,36,38,40,42,46,58,60,62,66,70,74,78,
%T A325706 82,84,86,90,94,102,106,110,112,114,118,120,122,125,126,130,132,134,
%U A325706 138,142,146,150,154,156,158,166,170,174,178,180,182,186,190,194,198
%N A325706 Heinz numbers of integer partitions containing all of their distinct multiplicities.
%C A325706 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%C A325706 Also numbers n divisible by the squarefree kernel of their "shadow" A181819(n).
%C A325706 The enumeration of these partitions by sum is given by A325705.
%e A325706 The sequence of terms together with their prime indices begins:
%e A325706     1: {}
%e A325706     2: {1}
%e A325706     6: {1,2}
%e A325706     9: {2,2}
%e A325706    10: {1,3}
%e A325706    12: {1,1,2}
%e A325706    14: {1,4}
%e A325706    18: {1,2,2}
%e A325706    22: {1,5}
%e A325706    26: {1,6}
%e A325706    30: {1,2,3}
%e A325706    34: {1,7}
%e A325706    36: {1,1,2,2}
%e A325706    38: {1,8}
%e A325706    40: {1,1,1,3}
%e A325706    42: {1,2,4}
%e A325706    46: {1,9}
%e A325706    58: {1,10}
%e A325706    60: {1,1,2,3}
%e A325706    62: {1,11}
%t A325706 Select[Range[100],#==1||SubsetQ[PrimePi/@First/@FactorInteger[#],Last/@FactorInteger[#]]&]
%Y A325706 Cf. A056239, A109297, A112798, A114639, A114640, A181819, A225486, A290689, A324753, A324843, A325702, A325705, A325707, A325755.
%K A325706 nonn
%O A325706 1,2
%A A325706 _Gus Wiseman_, May 18 2019