This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325706 #5 May 18 2019 22:46:36 %S A325706 1,2,6,9,10,12,14,18,22,26,30,34,36,38,40,42,46,58,60,62,66,70,74,78, %T A325706 82,84,86,90,94,102,106,110,112,114,118,120,122,125,126,130,132,134, %U A325706 138,142,146,150,154,156,158,166,170,174,178,180,182,186,190,194,198 %N A325706 Heinz numbers of integer partitions containing all of their distinct multiplicities. %C A325706 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A325706 Also numbers n divisible by the squarefree kernel of their "shadow" A181819(n). %C A325706 The enumeration of these partitions by sum is given by A325705. %e A325706 The sequence of terms together with their prime indices begins: %e A325706 1: {} %e A325706 2: {1} %e A325706 6: {1,2} %e A325706 9: {2,2} %e A325706 10: {1,3} %e A325706 12: {1,1,2} %e A325706 14: {1,4} %e A325706 18: {1,2,2} %e A325706 22: {1,5} %e A325706 26: {1,6} %e A325706 30: {1,2,3} %e A325706 34: {1,7} %e A325706 36: {1,1,2,2} %e A325706 38: {1,8} %e A325706 40: {1,1,1,3} %e A325706 42: {1,2,4} %e A325706 46: {1,9} %e A325706 58: {1,10} %e A325706 60: {1,1,2,3} %e A325706 62: {1,11} %t A325706 Select[Range[100],#==1||SubsetQ[PrimePi/@First/@FactorInteger[#],Last/@FactorInteger[#]]&] %Y A325706 Cf. A056239, A109297, A112798, A114639, A114640, A181819, A225486, A290689, A324753, A324843, A325702, A325705, A325707, A325755. %K A325706 nonn %O A325706 1,2 %A A325706 _Gus Wiseman_, May 18 2019