This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325708 #6 May 19 2019 06:17:49 %S A325708 1,2,6,12,18,30,36,60,90,120,150,180,210,270,300,360,420,450,540,600, %T A325708 630,750,840,900,1050,1080,1260,1350,1470,1500,1680,1800,1890,2100, %U A325708 2250,2310,2520,2700,2940,3000,3150,3780,4200,4410,4500,4620,5040,5250,5400 %N A325708 Numbers n whose prime indices cover an initial interval of positive integers and include all prime exponents of n. %C A325708 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions covering an initial interval of positive integers and containing all of their distinct multiplicities. The enumeration of these partitions by sum is given by A325707. %e A325708 The sequence of terms together with their prime indices begins: %e A325708 1: {} %e A325708 2: {1} %e A325708 6: {1,2} %e A325708 12: {1,1,2} %e A325708 18: {1,2,2} %e A325708 30: {1,2,3} %e A325708 36: {1,1,2,2} %e A325708 60: {1,1,2,3} %e A325708 90: {1,2,2,3} %e A325708 120: {1,1,1,2,3} %e A325708 150: {1,2,3,3} %e A325708 180: {1,1,2,2,3} %e A325708 210: {1,2,3,4} %e A325708 270: {1,2,2,2,3} %e A325708 300: {1,1,2,3,3} %e A325708 360: {1,1,1,2,2,3} %e A325708 420: {1,1,2,3,4} %e A325708 450: {1,2,2,3,3} %e A325708 540: {1,1,2,2,2,3} %e A325708 600: {1,1,1,2,3,3} %t A325708 Select[Range[1000],#==1||Range[PrimeNu[#]]==PrimePi/@First/@FactorInteger[#]&&SubsetQ[PrimePi/@First/@FactorInteger[#],Last/@FactorInteger[#]]&] %Y A325708 Cf. A055932, A109297, A114639, A114640, A181819, A290689, A290822, A325705, A325706, A325707. %K A325708 nonn %O A325708 1,2 %A A325708 _Gus Wiseman_, May 18 2019