This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325709 #24 Dec 26 2022 15:32:35 %S A325709 1,2,3,4,13,6,89,8,9,26,659,12,5443,178,39,16,49033,18,484037,52,267, %T A325709 1318,5222429,24,169,10886,27,356,61194647,78,774825383,32,1977,98066, %U A325709 1157,36,10552185239,968074,16329,104,153903050137,534,2394322471421,2636,117 %N A325709 Replace k with k! in the prime indices of n. %C A325709 The union is A308299. %H A325709 Amiram Eldar, <a href="/A325709/b325709.txt">Table of n, a(n) for n = 1..78</a> (calculated using the b-file at A062439) %H A325709 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>. %F A325709 Completely multiplicative with a(prime(n)) = prime(n!). %F A325709 Sum_{n>=1} 1/a(n) = 1/Product_{k>=1} (1 - 1/prime(k!)) = 3.292606708493... . - _Amiram Eldar_, Dec 09 2022 %e A325709 The sequence of terms together with their prime indices begins: %e A325709 1: {} %e A325709 2: {1} %e A325709 3: {2} %e A325709 4: {1,1} %e A325709 13: {6} %e A325709 6: {1,2} %e A325709 89: {24} %e A325709 8: {1,1,1} %e A325709 9: {2,2} %e A325709 26: {1,6} %e A325709 659: {120} %e A325709 12: {1,1,2} %e A325709 5443: {720} %e A325709 178: {1,24} %e A325709 39: {2,6} %e A325709 16: {1,1,1,1} %e A325709 49033: {5040} %e A325709 18: {1,2,2} %e A325709 484037: {40320} %e A325709 52: {1,1,6}. %t A325709 Table[Times@@Prime/@(If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]!),{n,20}] %o A325709 (PARI) A325709(n) = { my(f=factor(n)); prod(i=1,#f~,prime(primepi(f[i, 1])!)^f[i, 2]); }; \\ _Antti Karttunen_, Nov 17 2019 %o A325709 (Python) %o A325709 from math import prod, factorial %o A325709 from sympy import prime, primepi, factorint %o A325709 def A325709(n): return prod(prime(factorial(primepi(p)))**e for p, e in factorint(n).items()) # _Chai Wah Wu_, Dec 26 2022 %Y A325709 Cf. A000142, A056239, A062439, A064986, A076934, A112798, A115944, A284605, A308299, A322583, A325509, A325616, A325618, A325704. %K A325709 nonn,mult %O A325709 1,2 %A A325709 _Gus Wiseman_, May 19 2019 %E A325709 Keyword:mult added by _Antti Karttunen_, Nov 17 2019