cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325710 Number of maximal subsets of {1..n} containing no products of distinct elements.

This page as a plain text file.
%I A325710 #12 Aug 30 2019 11:21:01
%S A325710 1,1,2,2,2,2,4,4,6,6,10,10,14,14,24,28,32,32,62,62,92,102,184,184,254,
%T A325710 254,474,506,686,686,1172,1172,1792,1906,3568,3794,5326,5326,10282,
%U A325710 10618,14822,14822,25564,25564,35304,39432,76888,76888,100574,100574,197870,201622,282014
%N A325710 Number of maximal subsets of {1..n} containing no products of distinct elements.
%H A325710 Andrew Howroyd, <a href="/A325710/a325710.txt">PARI Program</a>
%e A325710 The a(1) = 1 through a(9) = 6 maximal subsets:
%e A325710   {1}  {1}  {1}   {1}    {1}     {1}     {1}      {1}       {1}
%e A325710        {2}  {23}  {234}  {2345}  {2345}  {23457}  {23457}   {234579}
%e A325710                                  {2456}  {24567}  {23578}   {235789}
%e A325710                                  {3456}  {34567}  {24567}   {245679}
%e A325710                                                   {25678}   {256789}
%e A325710                                                   {345678}  {3456789}
%t A325710 fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
%t A325710 Table[Length[fasmax[Select[Subsets[Range[n]],Intersection[#,Times@@@Subsets[#,{2,n}]]=={}&]]],{n,0,10}]
%o A325710 (PARI) \\ See link for program file.
%o A325710 for(n=0, 30, print1(A325710(n), ", ")) \\ _Andrew Howroyd_, Aug 29 2019
%Y A325710 Subsets without products of distinct elements are A326117.
%Y A325710 Maximal product-free subsets are A326496.
%Y A325710 Subsets with products are A326076.
%Y A325710 Maximal subsets without sums of distinct elements are A326498.
%Y A325710 Maximal subsets without quotients are A326492.
%Y A325710 Maximal subsets without sums or products of distinct elements are A326025.
%Y A325710 Cf. A121269, A151897, A326116, A326489, A326497, A326024.
%K A325710 nonn
%O A325710 0,3
%A A325710 _Gus Wiseman_, Jul 09 2019
%E A325710 Terms a(16) and beyond from _Andrew Howroyd_, Aug 29 2019