cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325754 Triangle read by rows giving the number of configurations of n indistinguishable pairs placed on the vertices of the ladder graph P_2 X P_n such that exactly k such pairs are joined by a horizontal edge.

This page as a plain text file.
%I A325754 #22 Mar 20 2020 15:09:23
%S A325754 1,1,0,2,0,1,7,4,4,0,43,38,21,2,1,372,360,168,36,9,0,4027,3972,1818,
%T A325754 478,93,6,1,51871,51444,23760,6640,1260,144,16,0,773186,768732,358723,
%U A325754 103154,20205,2734,278,12,1,13083385,13027060,6129670,1796740,363595,52900,5650,400,25,0
%N A325754 Triangle read by rows giving the number of configurations of n indistinguishable pairs placed on the vertices of the ladder graph P_2 X P_n such that exactly k such pairs are joined by a horizontal edge.
%C A325754 This is the number of "k-horizontal-domino" configurations in the game of memory played on a 2 X n rectangular array, see [Young].
%H A325754 D. Young, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL21/Young/young2.html">The Number of Domino Matchings in the Game of Memory</a>, Journal of Integer Sequences, Vol. 21 (2018), Article 18.8.1.
%H A325754 Donovan Young, <a href="https://arxiv.org/abs/1905.13165">Generating Functions for Domino Matchings in the 2 * k Game of Memory</a>, arXiv:1905.13165 [math.CO], 2019. Also in <a href="https://www.emis.de/journals/JIS/VOL22/Young/young13.html">J. Int. Seq.</a>, Vol. 22 (2019), Article 19.8.7.
%F A325754 G.f.: Sum_{j>=0} (2*j-1)!! y^j/(1-(1-z)*y)/(1+(1-z)*y)^(2*j+1).
%F A325754 E.g.f.: exp((sqrt(1 - 2 y)-1) (1 - z))/sqrt(1 - 2 y) - exp((y - 2) (1 - z)) sqrt(Pi/2) sqrt(1 - z) (-erfi(sqrt(2) sqrt(1 - z)) + erfi(((1 + sqrt(1 - 2 y)) sqrt(1 - z))/sqrt(2))).
%e A325754 The first few rows of T(n,k) are:
%e A325754   1;
%e A325754   1,  0;
%e A325754   2,  0,  1;
%e A325754   7,  4,  4,  0;
%e A325754   43, 38, 21, 2, 1;
%e A325754   ...
%e A325754 For n=2, let the vertex set of P_2 X P_2 be {A,B,C,D} and the edge set be {AB, AC, BD, CD}, where AB and CD are horizontal edges. For k=0, we may place the pairs on A, C and B, D or on A, D and B, C, hence T(2,0) = 2. If we place a pair on one of the horizontal edges we are forced to place the other pair on the remaining horizontal edge, hence T(2,1)=0 and T(2,2)=1.
%t A325754 CoefficientList[Normal[Series[Sum[Factorial2[2*k-1]*y^k/(1-(1-z)*y)/(1+(1-z)*y)^(2*k+1), {k, 0, 20}], {y, 0, 20}]], {y, z}];
%Y A325754 Cf. A046741, A055140, A079267 A178523, A265167, A318243, A318244, A318267, A318268, A318269, A318270, A325753.
%K A325754 nonn,tabl
%O A325754 0,4
%A A325754 _Donovan Young_, May 19 2019