This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325755 #11 Apr 14 2021 05:25:20 %S A325755 1,2,9,12,18,36,40,60,84,112,120,125,132,156,180,204,225,228,250,252, %T A325755 276,280,336,348,352,360,372,396,440,441,444,450,468,492,516,520,540, %U A325755 560,564,600,612,636,675,680,684,708,732,760,804,828,832,840,852,876 %N A325755 Numbers n divisible by their prime shadow A181819(n). %C A325755 We define the prime shadow A181819(n) to be the product of primes indexed by the exponents in the prime factorization of n. For example, 90 = prime(1)*prime(2)^2*prime(3) has prime shadow prime(1)*prime(2)*prime(1) = 12. %C A325755 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions containing their multiset of multiplicities as a submultiset (counted by A325702). %H A325755 Amiram Eldar, <a href="/A325755/b325755.txt">Table of n, a(n) for n = 1..10000</a> %e A325755 The sequence of terms together with their prime indices begins: %e A325755 1: {} %e A325755 2: {1} %e A325755 9: {2,2} %e A325755 12: {1,1,2} %e A325755 18: {1,2,2} %e A325755 36: {1,1,2,2} %e A325755 40: {1,1,1,3} %e A325755 60: {1,1,2,3} %e A325755 84: {1,1,2,4} %e A325755 112: {1,1,1,1,4} %e A325755 120: {1,1,1,2,3} %e A325755 125: {3,3,3} %e A325755 132: {1,1,2,5} %e A325755 156: {1,1,2,6} %e A325755 180: {1,1,2,2,3} %e A325755 204: {1,1,2,7} %e A325755 225: {2,2,3,3} %e A325755 228: {1,1,2,8} %e A325755 250: {1,3,3,3} %e A325755 252: {1,1,2,2,4} %t A325755 red[n_]:=If[n==1,1,Times@@Prime/@Last/@FactorInteger[n]]; %t A325755 Select[Range[100],Divisible[#,red[#]]&] %Y A325755 Cf. A181819, A182857, A290689, A290822, A323014, A324843, A325702, A325706, A325708, A325756. %K A325755 nonn %O A325755 1,2 %A A325755 _Gus Wiseman_, May 19 2019