This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325757 #9 May 19 2019 06:18:15 %S A325757 1,2,1,1,2,3,1,1,1,2,2,4,1,1,1,3,2,2,2,1,1,1,2,3,5,1,1,1,1,1,2,2,2,6, %T A325757 1,1,1,2,4,1,1,2,2,3,1,1,1,1,4,7,1,1,1,1,2,2,2,2,8,1,1,1,1,1,2,2,3,1, %U A325757 1,2,2,4,1,1,1,2,5,9,1,1,1,1,1,1,2,2,3 %N A325757 Irregular triangle read by rows giving the frequency span of n. %C A325757 We define the frequency span of an integer partition to be the partition itself if it has no or only one block, and otherwise it is the multiset union of the partition and the frequency span of its multiplicities. For example, the frequency span of (3,2,2,1) is {1,2,2,3} U {1,1,2} U {1,2} U {1,1} U {2} = {1,1,1,1,1,1,2,2,2,2,2,3}. The frequency span of a positive integer is the frequency span of its prime indices (row n of A296150). %e A325757 Triangle begins: %e A325757 1: %e A325757 2: 1 %e A325757 3: 2 %e A325757 4: 1 1 2 %e A325757 5: 3 %e A325757 6: 1 1 1 2 2 %e A325757 7: 4 %e A325757 8: 1 1 1 3 %e A325757 9: 2 2 2 %e A325757 10: 1 1 1 2 3 %e A325757 11: 5 %e A325757 12: 1 1 1 1 1 2 2 2 %e A325757 13: 6 %e A325757 14: 1 1 1 2 4 %e A325757 15: 1 1 2 2 3 %e A325757 16: 1 1 1 1 4 %e A325757 17: 7 %e A325757 18: 1 1 1 1 2 2 2 2 %e A325757 19: 8 %e A325757 20: 1 1 1 1 1 2 2 3 %e A325757 21: 1 1 2 2 4 %e A325757 22: 1 1 1 2 5 %e A325757 23: 9 %e A325757 24: 1 1 1 1 1 1 2 2 3 %e A325757 25: 2 3 3 %e A325757 26: 1 1 1 2 6 %e A325757 27: 2 2 2 3 %e A325757 28: 1 1 1 1 1 2 2 4 %t A325757 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A325757 freqspan[ptn_]:=If[Length[ptn]<=1,ptn,Sort[Join[ptn,freqspan[Sort[Length/@Split[ptn]]]]]]; %t A325757 Table[freqspan[primeMS[n]],{n,15}] %Y A325757 Row lengths are A325249. %Y A325757 Run-lengths are A325758. %Y A325757 Number of distinct terms in row n is A325759(n). %Y A325757 Cf. A001221, A001222, A056239, A071625, A112798, A181819, A182857, A290822, A323014, A324843, A325277, A325755, A325760. %K A325757 nonn,tabf %O A325757 1,2 %A A325757 _Gus Wiseman_, May 19 2019