This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325761 #5 May 18 2019 22:46:51 %S A325761 1,2,6,9,15,20,21,30,33,39,45,50,51,56,57,69,70,75,84,87,93,105,110, %T A325761 111,123,125,126,129,130,140,141,159,165,170,175,176,177,183,189,190, %U A325761 195,196,201,210,213,219,230,237,245,249,255,264,267,275,285,290,291 %N A325761 Heinz numbers of integer partitions whose length is itself a part. %C A325761 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A325761 The enumeration of these partitions by sum is given by A002865. %e A325761 The sequence of terms together with their prime indices begins: %e A325761 1: {} %e A325761 2: {1} %e A325761 6: {1,2} %e A325761 9: {2,2} %e A325761 15: {2,3} %e A325761 20: {1,1,3} %e A325761 21: {2,4} %e A325761 30: {1,2,3} %e A325761 33: {2,5} %e A325761 39: {2,6} %e A325761 45: {2,2,3} %e A325761 50: {1,3,3} %e A325761 51: {2,7} %e A325761 56: {1,1,1,4} %e A325761 57: {2,8} %e A325761 69: {2,9} %e A325761 70: {1,3,4} %e A325761 75: {2,3,3} %e A325761 84: {1,1,2,4} %e A325761 87: {2,10} %t A325761 Select[Range[100],MemberQ[PrimePi/@First/@FactorInteger[#],PrimeOmega[#]]&] %Y A325761 Cf. A001222, A002865, A056239, A093641, A109298, A110295, A112798, A118914, A325762, A325763. %K A325761 nonn %O A325761 1,2 %A A325761 _Gus Wiseman_, May 18 2019