This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325762 #4 May 18 2019 22:46:58 %S A325762 1,2,4,8,12,16,24,32,36,40,48,64,72,80,96,108,112,120,128,144,160,192, %T A325762 200,216,224,240,256,288,320,324,336,352,360,384,400,432,448,480,512, %U A325762 560,576,600,640,648,672,704,720,768,784,800,832,864,896,960,972,1000 %N A325762 Heinz numbers of integer partitions with no part greater than the number of ones. %C A325762 After 1 and 2, first differs from A322136 in having 200. %C A325762 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A325762 The enumeration of these partitions by sum is given by A002865. %e A325762 The sequence of terms together with their prime indices begins: %e A325762 1: {} %e A325762 2: {1} %e A325762 4: {1,1} %e A325762 8: {1,1,1} %e A325762 12: {1,1,2} %e A325762 16: {1,1,1,1} %e A325762 24: {1,1,1,2} %e A325762 32: {1,1,1,1,1} %e A325762 36: {1,1,2,2} %e A325762 40: {1,1,1,3} %e A325762 48: {1,1,1,1,2} %e A325762 64: {1,1,1,1,1,1} %e A325762 72: {1,1,1,2,2} %e A325762 80: {1,1,1,1,3} %e A325762 96: {1,1,1,1,1,2} %e A325762 108: {1,1,2,2,2} %e A325762 112: {1,1,1,1,4} %e A325762 120: {1,1,1,2,3} %e A325762 128: {1,1,1,1,1,1,1} %e A325762 144: {1,1,1,1,2,2} %t A325762 Select[Range[100],#==1||EvenQ[#]&&PrimePi[FactorInteger[#][[-1,1]]]<=FactorInteger[#][[1,2]]&] %Y A325762 Cf. A001222, A002865, A007814, A056239, A061395, A093641, A109298, A110295, A112798, A118914, A325761, A325763. %K A325762 nonn %O A325762 1,2 %A A325762 _Gus Wiseman_, May 18 2019