cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325762 Heinz numbers of integer partitions with no part greater than the number of ones.

This page as a plain text file.
%I A325762 #4 May 18 2019 22:46:58
%S A325762 1,2,4,8,12,16,24,32,36,40,48,64,72,80,96,108,112,120,128,144,160,192,
%T A325762 200,216,224,240,256,288,320,324,336,352,360,384,400,432,448,480,512,
%U A325762 560,576,600,640,648,672,704,720,768,784,800,832,864,896,960,972,1000
%N A325762 Heinz numbers of integer partitions with no part greater than the number of ones.
%C A325762 After 1 and 2, first differs from A322136 in having 200.
%C A325762 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%C A325762 The enumeration of these partitions by sum is given by A002865.
%e A325762 The sequence of terms together with their prime indices begins:
%e A325762      1: {}
%e A325762      2: {1}
%e A325762      4: {1,1}
%e A325762      8: {1,1,1}
%e A325762     12: {1,1,2}
%e A325762     16: {1,1,1,1}
%e A325762     24: {1,1,1,2}
%e A325762     32: {1,1,1,1,1}
%e A325762     36: {1,1,2,2}
%e A325762     40: {1,1,1,3}
%e A325762     48: {1,1,1,1,2}
%e A325762     64: {1,1,1,1,1,1}
%e A325762     72: {1,1,1,2,2}
%e A325762     80: {1,1,1,1,3}
%e A325762     96: {1,1,1,1,1,2}
%e A325762    108: {1,1,2,2,2}
%e A325762    112: {1,1,1,1,4}
%e A325762    120: {1,1,1,2,3}
%e A325762    128: {1,1,1,1,1,1,1}
%e A325762    144: {1,1,1,1,2,2}
%t A325762 Select[Range[100],#==1||EvenQ[#]&&PrimePi[FactorInteger[#][[-1,1]]]<=FactorInteger[#][[1,2]]&]
%Y A325762 Cf. A001222, A002865, A007814, A056239, A061395, A093641, A109298, A110295, A112798, A118914, A325761, A325763.
%K A325762 nonn
%O A325762 1,2
%A A325762 _Gus Wiseman_, May 18 2019