This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325763 #6 May 19 2019 20:33:04 %S A325763 1,2,4,6,8,12,16,18,20,24,32,36,40,48,54,56,60,64,72,80,96,100,108, %T A325763 112,120,128,144,160,162,168,176,180,192,200,216,224,240,256,280,288, %U A325763 300,320,324,336,352,360,384,392,400,416,432,448,480,486,500,504,512 %N A325763 Heinz numbers of integer partitions whose consecutive subsequence-sums cover an initial interval of positive integers. %C A325763 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A325763 The enumeration of these partitions by sum appears to be A002865. %e A325763 The sequence of terms together with their prime indices begins: %e A325763 1: {} %e A325763 2: {1} %e A325763 4: {1,1} %e A325763 6: {1,2} %e A325763 8: {1,1,1} %e A325763 12: {1,1,2} %e A325763 16: {1,1,1,1} %e A325763 18: {1,2,2} %e A325763 20: {1,1,3} %e A325763 24: {1,1,1,2} %e A325763 32: {1,1,1,1,1} %e A325763 36: {1,1,2,2} %e A325763 40: {1,1,1,3} %e A325763 48: {1,1,1,1,2} %e A325763 54: {1,2,2,2} %e A325763 56: {1,1,1,4} %e A325763 60: {1,1,2,3} %e A325763 64: {1,1,1,1,1,1} %e A325763 72: {1,1,1,2,2} %e A325763 80: {1,1,1,1,3} %t A325763 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A325763 Select[Range[100],Range[Total[primeMS[#]]]==Union[ReplaceList[primeMS[#],{___,s__,___}:>Plus[s]]]&] %Y A325763 Cf. A002033, A103295, A103300, A169942, A325676, A325685, A325764, A325765. %K A325763 nonn %O A325763 1,2 %A A325763 _Gus Wiseman_, May 19 2019