cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325764 Heinz numbers of integer partitions whose distinct consecutive subsequences have distinct sums that cover an initial interval of positive integers.

This page as a plain text file.
%I A325764 #4 May 21 2019 22:05:20
%S A325764 1,2,4,6,8,16,18,20,32,54,56,64,100,128,162,176,256,392,416,486,500,
%T A325764 512,1024,1088,1458,1936,2048,2432,2500,2744,4096,4374,5408,5888,8192,
%U A325764 12500,13122,14848,16384,18496,19208,21296,31744,32768,39366,46208,62500,65536
%N A325764 Heinz numbers of integer partitions whose distinct consecutive subsequences have distinct sums that cover an initial interval of positive integers.
%C A325764 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%C A325764 The enumeration of these partitions by sum is given by A325765.
%e A325764 The sequence of terms together with their prime indices begins:
%e A325764      1: {}
%e A325764      2: {1}
%e A325764      4: {1,1}
%e A325764      6: {1,2}
%e A325764      8: {1,1,1}
%e A325764     16: {1,1,1,1}
%e A325764     18: {1,2,2}
%e A325764     20: {1,1,3}
%e A325764     32: {1,1,1,1,1}
%e A325764     54: {1,2,2,2}
%e A325764     56: {1,1,1,4}
%e A325764     64: {1,1,1,1,1,1}
%e A325764    100: {1,1,3,3}
%e A325764    128: {1,1,1,1,1,1,1}
%e A325764    162: {1,2,2,2,2}
%e A325764    176: {1,1,1,1,5}
%e A325764    256: {1,1,1,1,1,1,1,1}
%e A325764    392: {1,1,1,4,4}
%e A325764    416: {1,1,1,1,1,6}
%e A325764    486: {1,2,2,2,2,2}
%e A325764    500: {1,1,3,3,3}
%e A325764    512: {1,1,1,1,1,1,1,1,1}
%t A325764 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A325764 Select[Range[1000],UnsameQ@@Total/@Union[ReplaceList[primeMS[#],{___,s__,___}:>{s}]]&&Range[Total[primeMS[#]]]==Union[ReplaceList[primeMS[#],{___,s__,___}:>Plus[s]]]&]
%Y A325764 Cf. A002033, A056239, A103295, A103300, A112798, A143823, A169942, A325676, A325685, A325763, A325765, A325769, A325770.
%K A325764 nonn
%O A325764 1,2
%A A325764 _Gus Wiseman_, May 20 2019