This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325764 #4 May 21 2019 22:05:20 %S A325764 1,2,4,6,8,16,18,20,32,54,56,64,100,128,162,176,256,392,416,486,500, %T A325764 512,1024,1088,1458,1936,2048,2432,2500,2744,4096,4374,5408,5888,8192, %U A325764 12500,13122,14848,16384,18496,19208,21296,31744,32768,39366,46208,62500,65536 %N A325764 Heinz numbers of integer partitions whose distinct consecutive subsequences have distinct sums that cover an initial interval of positive integers. %C A325764 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A325764 The enumeration of these partitions by sum is given by A325765. %e A325764 The sequence of terms together with their prime indices begins: %e A325764 1: {} %e A325764 2: {1} %e A325764 4: {1,1} %e A325764 6: {1,2} %e A325764 8: {1,1,1} %e A325764 16: {1,1,1,1} %e A325764 18: {1,2,2} %e A325764 20: {1,1,3} %e A325764 32: {1,1,1,1,1} %e A325764 54: {1,2,2,2} %e A325764 56: {1,1,1,4} %e A325764 64: {1,1,1,1,1,1} %e A325764 100: {1,1,3,3} %e A325764 128: {1,1,1,1,1,1,1} %e A325764 162: {1,2,2,2,2} %e A325764 176: {1,1,1,1,5} %e A325764 256: {1,1,1,1,1,1,1,1} %e A325764 392: {1,1,1,4,4} %e A325764 416: {1,1,1,1,1,6} %e A325764 486: {1,2,2,2,2,2} %e A325764 500: {1,1,3,3,3} %e A325764 512: {1,1,1,1,1,1,1,1,1} %t A325764 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A325764 Select[Range[1000],UnsameQ@@Total/@Union[ReplaceList[primeMS[#],{___,s__,___}:>{s}]]&&Range[Total[primeMS[#]]]==Union[ReplaceList[primeMS[#],{___,s__,___}:>Plus[s]]]&] %Y A325764 Cf. A002033, A056239, A103295, A103300, A112798, A143823, A169942, A325676, A325685, A325763, A325765, A325769, A325770. %K A325764 nonn %O A325764 1,2 %A A325764 _Gus Wiseman_, May 20 2019