cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325766 Number of integer partitions of n covering an initial interval of positive integers and containing their own multiset of multiplicities (as a submultiset).

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 3, 1, 5, 4, 5, 4, 6, 7, 8, 6, 12, 11, 19, 16, 22, 22, 25, 32, 38, 45, 45, 51, 53, 71, 69, 85, 92, 118, 125, 147, 149, 184, 187, 230, 254, 290, 317, 372, 397, 449, 502, 544, 616, 680, 758, 841, 930, 1042, 1151, 1262
Offset: 0

Views

Author

Gus Wiseman, May 19 2019

Keywords

Comments

The Heinz numbers of these partitions are given by A325767.

Examples

			The initial terms count the following partitions:
   1: (1)
   4: (2,1,1)
   5: (2,2,1)
   6: (2,2,1,1)
   7: (3,2,1,1)
   8: (3,2,1,1,1)
   9: (3,2,2,1,1)
  10: (3,2,2,1,1,1)
  11: (3,3,2,2,1)
  11: (3,3,2,1,1,1)
  11: (3,2,2,2,1,1)
  12: (4,3,2,1,1,1)
  13: (4,3,2,2,1,1)
  13: (4,3,2,1,1,1,1)
  13: (3,3,3,2,1,1)
  13: (3,3,2,2,2,1)
  13: (3,3,2,2,1,1,1)
  14: (4,3,2,2,1,1,1)
  14: (3,3,3,2,2,1)
  14: (3,3,3,2,1,1,1)
  14: (3,3,2,2,2,1,1)
		

Crossrefs

Cf. A000009 (partitions covering an initial interval), A055932, A114639, A114640, A290689, A324753, A325702, A325706, A325707, A325708, A325767.

Programs

  • Mathematica
    submultQ[cap_,fat_]:=And@@Function[i,Count[fat,i]>=Count[cap,i]]/@Union[List@@cap]
    Table[Length[Select[IntegerPartitions[n],Range[Length[Union[#]]]==Union[#]&&submultQ[Sort[Length/@Split[#]],Sort[#]]&]],{n,0,30}]