This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325767 #7 May 21 2019 22:05:41 %S A325767 1,2,12,18,36,60,120,180,360,450,540,600,840,1260,1350,1500,1680,1800, %T A325767 2250,2520,2700,3000,3780,4200,4500,5040,5400,5880,6750,8400,9000, %U A325767 10500,11340,11760,12600,13500,15120,17640,18480,18900,20580,21000,22680,25200 %N A325767 Heinz numbers of integer partitions covering an initial interval of positive integers and containing their own multiset of multiplicities (as a submultiset). %C A325767 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A325767 The enumeration of these partitions by sum is given by A325766. %e A325767 The sequence of terms together with their prime indices begins: %e A325767 1: {} %e A325767 2: {1} %e A325767 12: {1,1,2} %e A325767 18: {1,2,2} %e A325767 36: {1,1,2,2} %e A325767 60: {1,1,2,3} %e A325767 120: {1,1,1,2,3} %e A325767 180: {1,1,2,2,3} %e A325767 360: {1,1,1,2,2,3} %e A325767 450: {1,2,2,3,3} %e A325767 540: {1,1,2,2,2,3} %e A325767 600: {1,1,1,2,3,3} %e A325767 840: {1,1,1,2,3,4} %e A325767 1260: {1,1,2,2,3,4} %e A325767 1350: {1,2,2,2,3,3} %e A325767 1500: {1,1,2,3,3,3} %e A325767 1680: {1,1,1,1,2,3,4} %e A325767 1800: {1,1,1,2,2,3,3} %e A325767 2250: {1,2,2,3,3,3} %e A325767 2520: {1,1,1,2,2,3,4} %t A325767 red[n_]:=If[n==1,1,Times@@Prime/@Last/@FactorInteger[n]]; %t A325767 Select[Range[1000],#==1||Range[PrimeNu[#]]==PrimePi/@First/@FactorInteger[#]&&Divisible[#,red[#]]&] %Y A325767 Cf. A000009, A055932, A056239, A112798, A109297, A114640, A290689, A325702, A325708, A325766. %K A325767 nonn %O A325767 1,2 %A A325767 _Gus Wiseman_, May 19 2019