cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325767 Heinz numbers of integer partitions covering an initial interval of positive integers and containing their own multiset of multiplicities (as a submultiset).

This page as a plain text file.
%I A325767 #7 May 21 2019 22:05:41
%S A325767 1,2,12,18,36,60,120,180,360,450,540,600,840,1260,1350,1500,1680,1800,
%T A325767 2250,2520,2700,3000,3780,4200,4500,5040,5400,5880,6750,8400,9000,
%U A325767 10500,11340,11760,12600,13500,15120,17640,18480,18900,20580,21000,22680,25200
%N A325767 Heinz numbers of integer partitions covering an initial interval of positive integers and containing their own multiset of multiplicities (as a submultiset).
%C A325767 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%C A325767 The enumeration of these partitions by sum is given by A325766.
%e A325767 The sequence of terms together with their prime indices begins:
%e A325767      1: {}
%e A325767      2: {1}
%e A325767     12: {1,1,2}
%e A325767     18: {1,2,2}
%e A325767     36: {1,1,2,2}
%e A325767     60: {1,1,2,3}
%e A325767    120: {1,1,1,2,3}
%e A325767    180: {1,1,2,2,3}
%e A325767    360: {1,1,1,2,2,3}
%e A325767    450: {1,2,2,3,3}
%e A325767    540: {1,1,2,2,2,3}
%e A325767    600: {1,1,1,2,3,3}
%e A325767    840: {1,1,1,2,3,4}
%e A325767   1260: {1,1,2,2,3,4}
%e A325767   1350: {1,2,2,2,3,3}
%e A325767   1500: {1,1,2,3,3,3}
%e A325767   1680: {1,1,1,1,2,3,4}
%e A325767   1800: {1,1,1,2,2,3,3}
%e A325767   2250: {1,2,2,3,3,3}
%e A325767   2520: {1,1,1,2,2,3,4}
%t A325767 red[n_]:=If[n==1,1,Times@@Prime/@Last/@FactorInteger[n]];
%t A325767 Select[Range[1000],#==1||Range[PrimeNu[#]]==PrimePi/@First/@FactorInteger[#]&&Divisible[#,red[#]]&]
%Y A325767 Cf. A000009, A055932, A056239, A112798, A109297, A114640, A290689, A325702, A325708, A325766.
%K A325767 nonn
%O A325767 1,2
%A A325767 _Gus Wiseman_, May 19 2019