This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325770 #11 Jun 27 2020 21:27:19 %S A325770 0,1,1,2,1,3,1,3,2,3,1,5,1,3,3,4,1,5,1,5,3,3,1,7,2,3,3,5,1,6,1,5,3,3, %T A325770 3,8,1,3,3,7,1,6,1,5,5,3,1,9,2,5,3,5,1,7,3,7,3,3,1,9,1,3,5,6,3,6,1,5, %U A325770 3,6,1,11,1,3,5,5,3,6,1,9,4,3,1,9,3,3,3 %N A325770 Number of distinct nonempty contiguous subsequences of the integer partition with Heinz number n. %C A325770 After a(1) = 0, first differs from A305611 at a(42) = 6, A305611(42) = 7. %C A325770 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %F A325770 a(n) = A335519(n) - 1. %e A325770 The a(84) = 9 distinct nonempty contiguous subsequences of (4,2,1,1) are (1), (2), (4), (1,1), (2,1), (4,2), (2,1,1), (4,2,1), (4,2,1,1). %t A325770 Table[Length[Union[ReplaceList[If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]],{___,s__,___}:>{s}]]],{n,30}] %Y A325770 Cf. A002865, A103295, A112798, A124771, A276024, A325765, A325768, A325769, A335519, A335838. %K A325770 nonn %O A325770 1,4 %A A325770 _Gus Wiseman_, May 20 2019 %E A325770 Name corrected by _Gus Wiseman_, Jun 27 2020