cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325770 Number of distinct nonempty contiguous subsequences of the integer partition with Heinz number n.

This page as a plain text file.
%I A325770 #11 Jun 27 2020 21:27:19
%S A325770 0,1,1,2,1,3,1,3,2,3,1,5,1,3,3,4,1,5,1,5,3,3,1,7,2,3,3,5,1,6,1,5,3,3,
%T A325770 3,8,1,3,3,7,1,6,1,5,5,3,1,9,2,5,3,5,1,7,3,7,3,3,1,9,1,3,5,6,3,6,1,5,
%U A325770 3,6,1,11,1,3,5,5,3,6,1,9,4,3,1,9,3,3,3
%N A325770 Number of distinct nonempty contiguous subsequences of the integer partition with Heinz number n.
%C A325770 After a(1) = 0, first differs from A305611 at a(42) = 6, A305611(42) = 7.
%C A325770 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%F A325770 a(n) = A335519(n) - 1.
%e A325770 The a(84) = 9 distinct nonempty contiguous subsequences of (4,2,1,1) are (1), (2), (4), (1,1), (2,1), (4,2), (2,1,1), (4,2,1), (4,2,1,1).
%t A325770 Table[Length[Union[ReplaceList[If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]],{___,s__,___}:>{s}]]],{n,30}]
%Y A325770 Cf. A002865, A103295, A112798, A124771, A276024, A325765, A325768, A325769, A335519, A335838.
%K A325770 nonn
%O A325770 1,4
%A A325770 _Gus Wiseman_, May 20 2019
%E A325770 Name corrected by _Gus Wiseman_, Jun 27 2020