This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325771 #11 Feb 02 2023 13:23:36 %S A325771 0,1,1,2,1,5,4,8,5,15,11,24,15,39,28,58,38,90,62,130,85,190,131,268, %T A325771 177,379,258,522,346,722,489,974,648,1317,890,1754,1168,2330,1572, %U A325771 3058,2042,4010,2699,5200,3475,6731,4532,8642,5783,11068,7446,14076,9430 %N A325771 Rectangular array: row n shows the number of parts in all partitions of n that are == k (mod 2), for k = 0, 1. %C A325771 Row n partitions A006128 into 2 parts, r(n,0) + r(n,1) = p(n) = A006128(n). What is the limiting behavior of r(n,0)/p(n)? %H A325771 Clark Kimberling, <a href="/A325771/b325771.txt">Table of n, a(n) for n = 1..100</a> %F A325771 (row n) = (A066898(n), A066897(n)). %e A325771 First 15 rows: %e A325771 0 1 %e A325771 1 2 %e A325771 1 5 %e A325771 4 8 %e A325771 5 15 %e A325771 11 24 %e A325771 15 39 %e A325771 28 58 %e A325771 38 90 %e A325771 62 130 %e A325771 85 190 %e A325771 131 268 %e A325771 177 379 %e A325771 258 522 %e A325771 346 722 %t A325771 f[n_] := Mod[Flatten[IntegerPartitions[n]], 2]; %t A325771 Table[Count[f[n], k], {n, 1, 40}, {k, 0, 1}] (* A325771 array *) %t A325771 Flatten[%] (* A325771 sequence *) %Y A325771 Cf. A006128, A066898, A066897, A325772, A325773, A325774. %K A325771 nonn,tabf,easy %O A325771 1,4 %A A325771 _Clark Kimberling_, Jun 05 2019