This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325772 #12 Aug 17 2020 13:42:14 %S A325772 0,1,0,0,2,1,1,4,1,1,8,3,2,13,5,5,21,9,7,34,13,11,52,23,19,77,32,27, %T A325772 114,51,40,163,72,61,232,106,85,325,146,120,450,210,170,614,284,232, %U A325772 836,395,316,1120,529,433,1494,717,576,1976,946,767,2599,1264 %N A325772 Rectangular array: row n shows the number of parts in all partitions of n that are == k (mod 3), for k = 0, 1, 2. %C A325772 Row n partitions A006128 into 3 parts, r(n,0) + r(n,1) + r(n,2) = p(n) = A006128(n). What is the limiting behavior of r(n,0)/p(n)? %H A325772 Clark Kimberling, <a href="/A325772/b325772.txt">Table of n, a(n) for n = 1..150</a> %e A325772 First 15 rows: %e A325772 0 1 0 %e A325772 0 2 1 %e A325772 1 4 1 %e A325772 1 8 3 %e A325772 2 13 5 %e A325772 5 21 9 %e A325772 7 34 13 %e A325772 11 52 23 %e A325772 19 77 32 %e A325772 27 114 51 %e A325772 40 163 72 %e A325772 61 232 106 %e A325772 85 325 146 %e A325772 120 450 210 %e A325772 170 614 264 %t A325772 f[n_] := Mod[Flatten[IntegerPartitions[n]], 3]; %t A325772 Table[Count[f[n], k], {n, 1, 40}, {k, 0, 1,2}] (* A325772 array *) %t A325772 Flatten[%] (* A325772 sequence *) %Y A325772 Cf. A006128, A325771, A325773, A325774. %K A325772 nonn,tabf,easy %O A325772 1,5 %A A325772 _Clark Kimberling_, Jun 05 2019