This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325773 #10 Feb 02 2023 13:25:15 %S A325773 0,1,0,0,0,2,1,0,0,4,1,1,1,7,3,1,1,13,4,2,2,20,9,4,3,32,12,7,7,48,21, %T A325773 10,9,73,29,17,15,106,47,24,21,153,64,37,34,215,97,53,46,303,131,76, %U A325773 68,416,190,106,92,571,254,151,134,770,355,204,178,1037 %N A325773 Rectangular array: row n shows the number of parts in all partitions of n that are == k (mod 4), for k = 0, 1, 2, 3. %C A325773 Row n partitions A006128 into 4 parts, r(n,0) + r(n,1) + r(n,3) + r(n,4) = p(n) = A006128(n). What is the limiting behavior of r(n,0)/p(n)? %H A325773 Clark Kimberling, <a href="/A325773/b325773.txt">Table of n, a(n) for n = 1..200</a> %e A325773 First 15 rows: %e A325773 0 1 0 0 %e A325773 0 2 1 0 %e A325773 0 4 1 1 %e A325773 1 7 3 1 %e A325773 1 13 4 2 %e A325773 2 20 9 4 %e A325773 3 32 12 7 %e A325773 7 48 21 10 %e A325773 9 73 29 17 %e A325773 15 106 47 24 %e A325773 21 153 64 37 %e A325773 34 215 97 53 %e A325773 46 303 131 76 %e A325773 68 416 190 106 %e A325773 92 571 254 151 %t A325773 f[n_] := Mod[Flatten[IntegerPartitions[n]], 4]; %t A325773 Table[Count[f[n], k], {n, 1, 40}, {k,0,1,2,3}] (* A325773 array *) %t A325773 Flatten[%] (* A325773 sequence *) %Y A325773 Cf. A006128, A325771, A325772, A325774. %K A325773 nonn,tabf,easy %O A325773 1,6 %A A325773 _Clark Kimberling_, Jun 05 2019