This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325774 #10 Feb 02 2023 13:25:06 %S A325774 0,1,0,0,0,0,2,1,0,0,0,4,1,1,0,0,7,3,1,1,1,12,4,2,1,1,20,8,4,2,2,31, %T A325774 12,6,3,3,47,20,10,6,5,70,28,16,9,9,102,44,23,14,13,147,61,34,20,19, %U A325774 208,91,50,31,28,290,124,71,43,40,400,178,99,63,58,546 %N A325774 Rectangular array: row n shows the number of parts in all partitions of n that are == k (mod 5), for k = 0, 1, 2, 3, 4. %C A325774 Row n partitions A006128 into 5 parts, r(n,0) + r(n,1) + r(n,3) + r(n,4) + r(n,5) = p(n) = A006128(n). What is the limiting behavior of r(n,0)/p(n)? %H A325774 Clark Kimberling, <a href="/A325774/b325774.txt">Table of n, a(n) for n = 1..250</a> %e A325774 First 15 rows: %e A325774 0 1 0 0 0 %e A325774 0 2 1 0 0 %e A325774 0 4 1 1 0 %e A325774 0 7 3 1 1 %e A325774 1 12 4 2 1 %e A325774 1 20 8 4 2 %e A325774 2 31 12 6 3 %e A325774 3 47 20 10 6 %e A325774 5 70 28 16 9 %e A325774 9 102 44 23 14 %e A325774 13 147 61 34 20 %e A325774 19 208 91 50 31 %e A325774 28 290 124 71 43 %e A325774 40 400 178 99 63 %e A325774 58 546 239 139 86 %t A325774 f[n_] := Mod[Flatten[IntegerPartitions[n]], 5]; %t A325774 Table[Count[f[n], k], {n, 1, 40}, {k,0,1,2,3,4}] (* A325774 array *) %t A325774 Flatten[%] (* A325773 sequence *) %Y A325774 Cf. A006128, A325771, A325772, A325773. %K A325774 nonn,tabf,easy %O A325774 1,7 %A A325774 _Clark Kimberling_, Jun 05 2019