This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325778 #5 May 21 2019 22:06:06 %S A325778 1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,25,26,27,28, %T A325778 29,31,32,33,34,35,37,38,39,41,42,43,44,45,46,47,49,50,51,52,53,54,55, %U A325778 56,57,58,59,61,62,64,65,66,67,68,69,71,73,74,75,76,77 %N A325778 Heinz numbers of integer partitions whose distinct consecutive subsequences have different sums. %C A325778 First differs from A299702 in having 462. %C A325778 The enumeration of these partitions by sum is given by A325769. %e A325778 Most small numbers are in the sequence. However, the sequence of non-terms together with their prime indices begins: %e A325778 12: {1,1,2} %e A325778 24: {1,1,1,2} %e A325778 30: {1,2,3} %e A325778 36: {1,1,2,2} %e A325778 40: {1,1,1,3} %e A325778 48: {1,1,1,1,2} %e A325778 60: {1,1,2,3} %e A325778 63: {2,2,4} %e A325778 70: {1,3,4} %e A325778 72: {1,1,1,2,2} %e A325778 80: {1,1,1,1,3} %e A325778 84: {1,1,2,4} %e A325778 90: {1,2,2,3} %e A325778 96: {1,1,1,1,1,2} %t A325778 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A325778 Select[Range[100],UnsameQ@@Total/@Union[ReplaceList[primeMS[#],{___,s__,___}:>{s}]]&] %Y A325778 Complement of A325777. %Y A325778 Cf. A002033, A056239, A112798, A143823, A169942, A299702, A301899, A325676, A325768, A325769, A325770, A325779. %K A325778 nonn %O A325778 1,2 %A A325778 _Gus Wiseman_, May 20 2019