cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325778 Heinz numbers of integer partitions whose distinct consecutive subsequences have different sums.

This page as a plain text file.
%I A325778 #5 May 21 2019 22:06:06
%S A325778 1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,25,26,27,28,
%T A325778 29,31,32,33,34,35,37,38,39,41,42,43,44,45,46,47,49,50,51,52,53,54,55,
%U A325778 56,57,58,59,61,62,64,65,66,67,68,69,71,73,74,75,76,77
%N A325778 Heinz numbers of integer partitions whose distinct consecutive subsequences have different sums.
%C A325778 First differs from A299702 in having 462.
%C A325778 The enumeration of these partitions by sum is given by A325769.
%e A325778 Most small numbers are in the sequence. However, the sequence of non-terms together with their prime indices begins:
%e A325778   12: {1,1,2}
%e A325778   24: {1,1,1,2}
%e A325778   30: {1,2,3}
%e A325778   36: {1,1,2,2}
%e A325778   40: {1,1,1,3}
%e A325778   48: {1,1,1,1,2}
%e A325778   60: {1,1,2,3}
%e A325778   63: {2,2,4}
%e A325778   70: {1,3,4}
%e A325778   72: {1,1,1,2,2}
%e A325778   80: {1,1,1,1,3}
%e A325778   84: {1,1,2,4}
%e A325778   90: {1,2,2,3}
%e A325778   96: {1,1,1,1,1,2}
%t A325778 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A325778 Select[Range[100],UnsameQ@@Total/@Union[ReplaceList[primeMS[#],{___,s__,___}:>{s}]]&]
%Y A325778 Complement of A325777.
%Y A325778 Cf. A002033, A056239, A112798, A143823, A169942, A299702, A301899, A325676, A325768, A325769, A325770, A325779.
%K A325778 nonn
%O A325778 1,2
%A A325778 _Gus Wiseman_, May 20 2019